Computer Vision Algorithms applied on AHCAL Data

Julian Utehs

Georg-August-Universität Göttingen

j.utehs@uni-goettingen.de

February 17, 2022

GEORG-AUGUST-UNIVERSITÄT Göttingen

イロト イボト イヨト イヨト

Julian Utehs CV, AHCAL and MC Truth

Uni Gö

Problems	Approach and Reminder	Outlook

Overview

2 Approach and Reminder

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のQの

Julian Utehs CV, AHCAL and MC Truth

Problems	Approach and Reminder	Outlook
•0		

Hadronic showers

- Hadronic EM Showers comparison
- Less compact
- More invisible energy
- More delayed

Image source: 'Study of shower shapes recorded with the CALICE-AHCAL in 2018 Test Beam Data' by Olin Pinto

イロト イヨト イヨト

From Event to Energy

- Each event may contain different EM fraction, a different size and timing
- Nevertheless in average they should be similar or show a similar behaviour in data
- Idea: Use well-known Computer Vision (CV) Algorithms to calculate the EM-fraction
- Aim: Finding the EM fraction of every event Software compensation
- Benefits: Different method for particle identification
- Benefits: Might be more robust against angle variations and differences from training data

イロト イロト イヨト イヨト

	b	le	

イロト イポト イヨト イヨト

Computer Vision Algorithms

- Gaussian Blur smoothen edges and hot/cold pixel/voxel
- Edge Detection find edges and surfaces
- Floodfill find areas and blobs
- Marching Cubes find fitting curve and mesh
- k-Means relates voxel to center of gravity of blobs

Approach and Reminder

Results 0000000 Outlook 00

Uni Gö

Gaussian Blur, Edge Detection, Floodfill

CV, AHCAL and MC Truth

Julian Utehs

Problems	Approach and Reminder	Outlook
	0000	

Marching Cubes

All 18 possible cases of 3d Marching Cubes

Mesh of a head with Marching Cubes

Uni Gö

Source: http://www.boristhebrave.com/2018/04/15/dual-contouring-tutorial/ and Wikipedia 😑 🗸 😑 🖉

Julian Utehs

CV, AHCAL and MC Truth

bl		

k-Means Algorithm

Source: https://de.wikipedia.org/wiki/K-Means-Algorithmus

Problems	Approach and Reminder	Results	Outlook
		•000000	

Particle Identification

Calculation sequence of the inside to outside ratio for hadronic showers to estimate the energy concentration in EM - \circ \circ

Problems	Approach and Reminder	Results	Outlook
00		0●00000	00

Particle Identification

Figure: Number of event vs. inside-outside-ratio of 10 and 80GeV electrons and pions, respectively, after applying gaussian blur and threshold on it

Julian Utehs CV, AHCAL and MC Truth Uni Gö

æ

イロト イヨト イヨト イヨト

Approach and Reminder 0000 Results 00●0000

Uni Gö

Particle Identification MC Truth

Julian Utehs CV, AHCAL and MC Truth

Problems	Approach and Reminder	Results	Outlook
00	0000	000000	00

Surface-to-Volume Ratio

Calculation sequence of the volume to surface ratio for hadronic showers to estimate the compactness of the event

Julian Utehs	Uni Gö
CV, AHCAL and MC Truth	

・ロト (日下・モート・モー・ショー・ショー)

Results 0000●00

Surface-to-Volume Ratio

X-Axis: Surface-to-Volume-Ratio Y-Axis: Energy Sum

Julian Utehs CV, AHCAL and MC Truth <ロト < 回 ト < 目 ト < 目 ト < 目 > うへで Uni Gö Approach and Reminder

Results 00000●0

Surface-to-Volume Ratio over EM Fraction

Figure: Correlation Factors: -0.53 (20GeV), -0.68 (80GeV), -0.66 (120GeV), -0.65 (200GeV)

イロト イヨト イヨト イヨト

・ロト ・四ト ・ヨト ・ヨト

Comparison between Computer Vision Algorithms and Maschine Learning

- The presented algorithms should be nearly independent from the incident angle (all coordinates are treated equally)
- There is no training data, thus there is no dependence from it (nevertheless there should be validation for different conditions)
- No cuts were applied (!)
- Even it might be less efficient, it is well defined and thus comprehensible (E.g.: FastCaloSim Geant4)
- Should be as fast as or faster than a machine learning approach

Problems	Approach and Reminder	Outlook
		•0

Outlook

- Diving deeper into the algorithms
- See how far I can get
- Compare and then combines the results with the other (e.g. machine learning) approaches

イロト イヨト イヨト イヨト

	b	le	n	

Approach	Reminder
0000	

Questions?

Figure: Me, myself and I, missing a crayon

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Julian Utehs CV, AHCAL and MC Truth Uni Gö