Study of LGAD with high timing resolution

CALICE Analysis Meeting

<u>M. Kuhara^A</u>

T. Suehara^A, K. Kawagoe^A, T. Yoshioka^B, Y. Kato^C T.Onoe^A, S. Tsumura^A (Kyushu Univ.^A, RCAPP^B, The Univ. of Tokyo^C)

Introduction

ILD and ECAL

ILD (International Large Detector)

- \succ Detector to be placed at the collision point of the ILC
- > Main components: Vertex, TPC, ECAL, HCAL, Coil

SiW-ECAL

- Sandwich calorimeter (30 layers)
- Absorption layers : Tungsten

Detection layers : Si (Pixel size: $5 \times 5 mm^2$)

or Scintillator

5.5 mm x 256 pixels

Particle ID of hadrons and timing resolution

Particle ID of hadrons

- > Only measurement of dE/dx and momentum
 - ID of K/ π ~ 3 σ ID of K/p < 2 σ
 - There exists momentum ranges where we can't identify: I-3 GeV
- Better separation power can be obtained by adding Time-of-Fright (ToF)
- > Possible to separate (5 σ) π /K up to 4 GeV by 20 ps ToF with dE/dx

- > ECAL with standard Si: ~100 ps up to 3 GeV (3 σ)
- > LGAD: 20–30 ps up to 5 GeV (3 σ)

 \rightarrow we are planning to use LGAD to replace sensor of a part of ECAL

Type of LGAD

LGAD (Low Gain Avalanche Detector)

- > Silicon sensor with internal avalanche multiplication mechanism
- > Studies of LGAD in ATLAS group have achieved timing resolution of about 26 ps

Reach-through type

- Multiplication area is not uniformly formed
- Amplification ratio depends on the hit position of the particle

Inverse type

- Multiplication area is uniformly formed
- > Uniform response is expected regardless of the hit position

Test beam with Skirok2-CMS

Test beam with Skirok2-CMS

Test beam 16-19 Feb. 2021 at ELPH, Tohoku University

- Positron beam, ~700 MeV
- Main purpose : Study of timing measurement of Avalanche photo diode (APD has the same structure as LGAD)

Result : ADC distribution

red is clearly separated from the pedestal (black)

trigger threshold is higher than average signal

 \rightarrow ~100% of the signal hits cause detectable signal \rightarrow need to reduce the noise to lower the threshold

Result: timing resolution

Timing correlation of two APDs (channel 36 and 39)

• Jitters of Skiroc2-CMS are large in the lower signal strength

(jitter is ~200 ps with 75 fC charge of signal)

• to achieve timing resolution 30 ps by noise reduction is difficult... \rightarrow need another reading system

Test beam with discrete AMP

Test beam with discrete amplifier

APD No.	Type of APD	<i>V_{br}</i> [V]	size [mm]	capacity [pF]
S8664-50K	Inverse	416	5φ	55 _P F
S2385	Reach through	160	5φ	95 _P F

CALICE Analysis Meeting

Analysis method

Set up

• The signals from the two APDs (APD1 and APD2) amplified by the amp. board are directly acquired and analyzed by an oscilloscope.

Analysis method

- signal from APD1 \rightarrow ch1(20 mV/div) and ch2(2 mV/div)
- signal from APD2 \rightarrow ch3(20 mV/div) and ch4(2 mV/div)
- Ch1 and ch3: obtain waveform height and timing information for large signals
- Ch2 and ch4: Obtain more detailed timing information

for small signals

Oscilloscope

MSO 4104 (Tektronix) • IGHz, 5GS/s

Obtain the timing at the point where the voltage is 50 % of the wave height →Estimate the timing resolution from the time difference between the two APDs.

CALICE Analysis Meeting

Result of timing resolution

Timing resolution of S8664-50K is better

 \rightarrow Difference in capacitance related to signal rising time (S8664-50K:55 pF S2385:95 pF)

Evaluation of timing jitter due to noise

• Pedestal variation as a noise effect,

add this effect to the pedestal, wave height, and 50% of wave height points

- Events with charge > 18 fC S8664-50K: 120 ps, S2385: 200 ps
- Events with charge > 36 fC S8664-50K: 62 ps, S2385: 106 ps
- Most of the time resolution is affected by noise caused by sensors and readout circuits

Relation between Charge of signal and Timing jitter due to noise

Result

For achieve high timing resolution

Timing resolution factors: $\sigma_t^2 = \sigma_s^2 + \sigma_n^2$

- σ_s^2 : Uncertainty in the timing response of the sensor itself
 - > Landau noise: waveform changes depending on whether energy deposit occurs more on the upper side or lower side of the sensor.
 - \rightarrow Making the sensitivity layer thinner decrease Landau noise, but the signal becomes smaller, so the S/N ratio becomes worse. (It seem that the thickness of sensitive layer of S8664-50K is 5 μm)
 - > Avalanche amplification fluctuation: Uncertainty in time for accelerated electrons to knock out surrounding electrons
- σ_n^2 : Uncertainty caused by noise
 - > Capacitance of sensor: The smaller the capacitance of the sensor, the smaller the rise time of the waveform.

 \rightarrow Capacitance is proportional to the size of the sensor \rightarrow Smaller sensors are less affected by noise.

- \succ Thermal noise: caused by high temperatures in amplifiers and sensor \rightarrow need cooling
- > Noise due to disturbance to the conduction path between the sensor and the amplifier or due to HV

 \rightarrow devise wiring, Stabilization of supply voltage, etc...

Summary

- LGAD have high timing resolution \rightarrow Introduction of LGAD is expected to improve the timing resolution of ECAL
- Test beam with Skiroc2-CMS to measure the performance of APD
 - > Obtained timing resolution of inverse type APD (S8664-50K): 242 ps
 - > Jitter of Skiroc2-CMS are large in the lower signal strength
- Test beam with discrete amplifier to measure the performance of APD
 - > Achieved 63 ps timing resolution with inverse S8664-50K using only large signals
 - > Improved timing resolution by increasing the statistics of the large signal.
 - \succ Increase the amount of charge by using an APD with a thicker sensitivity layer \rightarrow Decrease the Jitter
 - Use an oscilloscope with good performance
 - > Device to reduce noise...cooling of amplifier board, wiring etc...

BACKUP

Timing resolution of Skiroc2-CMS

- Timing resolution \cong (rising time)/(S/N ratio) + digitization jitter + Landau noise + timewalk
 - noise of Skirock2-CMS is large
 - rising time of Skiroc2-CMS fast shaper is large: 5 nsec
 - Value of S/N ratio ~250 required for 20 ps timing resolution equivalent to 600e- noise \rightarrow too difficult
 - Fast shaper can be faster but S/N degraded (need detailed study)
 - Digitization jitter of Skiroc2-CMS: ~30 ps
 - Landau noise: waveform changes depending on whether energy deposit occurs

more on the upper side or lower side of the sensor.

- Timewalk can be corrected (S.Tsumura's talk)
- Noise reduction by better HV treatment
 - However, to achieve timing resolution 30 ps by noise reduction is difficult... \rightarrow need another reading system

Measurement with Skiroc2-CMS

ASIC for reading signals of silicon sensor

TOA (Time Of Arrival)

Timing information between the triggered

time and the next internal clock

ADC

> 13 cells waveform digitizer at 50 MHz

ring buffer

Timewalk measurement

大きい信号

小さい信号

timewalk

TOA fall

TOA rise

閾値

Timewalk

- 入力された信号の大きさによって生じる時間情報の誤差
- 同じタイミングで入力されたとしても 大きい信号のほうが小さい信号より 閾値を超えるタイミングが早くなるため 時間情報に誤差が生じる
- テストボードを用いてInjection信号の電圧を変えながら
 その時のTOAを記録することで、Timewalkを測定

TOAと入力信号の電荷の関係から、 timewalkが従う指数関数を決定

→実験データのtimewalk補正に使用