Data quality and Beam Test Performance SiW-ECAL TB@DESY 2021

Adrián Irles (AITANA group at IFIC – CSIC/UV) on behalf the SiW-ECAL team

Test Beam DESY 2021

Test Beam

- DESY offers non-spilled beams of 1-6GeV (e-, e+)
- 15 layers with 1024 readout cells each
 - More than any LHC calorimeter
 - But it fits in a suitcase
- First week dedicated for commissioning
 - Threshold optimization, single cell calibration, etc

Second week dedicated to electromagnetic showers

- Mounting started monday afternoon
- Ready for data taking since wednseday morning
 - But it took us a bit more for problems with the movable stahe
 - Since then: the smoother data taking :D

Irles A., 17th February. 2022

Test Beam setup

First 4 layers have been "ressurrected"

- Not operative before for different reasons
- ▶ 7 more layers have been "rebuild" → to adapt them to the new ultracompact DAQ (heavy manipulation)

4 Layers new

• 2 of them with sensors glued in two separated batches (one sensor for test, the other 3 one year later)

Test Beam

- DESY offers non-spilled beams of 1-6GeV (e-, e+)
- 15 layers with 1024 readout cells each
 - More than any LHC calorimeter
 - But it fits in a suitcase
- First week dedicated for commissioning
 - Threshold optimization, single cell calibration, etc
- Second week dedicated to electromagnetic showers
- Mounting started monday afternoon
- Ready for data taking since wednseday morning
 - But it took us a bit more for problems with the movable stahe
 - Since then: the smoother data taking :D

Technical TestBeam with new DAQ, larger concentration (xyz) than ever

Irles A., 17th February. 2022

https://github.com/SiWECAL-TestBeam

- ► SiWECAL-TB-analysis → code for commissioning, detector operation and technical analysis
 - Branch during the beam test: slboard_TB2020
 - New branch tfor analysis TB2021-Analysis (as master)
- ▶ SiWECAL-TB-Sim
 - Tools for simulation (DD4HEP based) and for digitization
- SiWECAL-TB-LCIO Analysis
 - For LCIO based analysis
 - Starting from event building (see H. Garcia's talk)

Users/developpers: Y. Okugawa, J. Kunath, H. cabrera, F. Jimenez, S. Tsumura

SiWECAL-TB-Analysis is the master code for "technical" studies.

Irles A., 17th February. 2022

Technical analysis (100% root based)

Physics analysis (LCIO based)

Irles A., 17th February. 2022

Basic performance: pedestals

Basic performance: pedestals

MIP calibration

average of MPVs

MIP calibration

average of MPVs

- ▶ We observe few unhomogeneities:
 - Layers 7-10 have thicker sensors (larger signal)
 - Issues during the gluing of the sensors of Layers 9-10 were reported (training of the gluing robot, different mix of glue used, manual interventions during the process)
 - Layer 12 had one wafer replaced

106) AD

90

80

70

60

50

40

30

20

-10

_0

Holdscan MIPs vs Position scan MIPs

average of MPVs

HV system

average of MPVs

Beam tests are crucial to understand the hardware !!

- New DAQ system and a mix of new and old layers
- Higher density and number of channels than ever in the project
- Unexpected situations that challenge the hardware only appear during testbeam (HV issue)
- Work is being done in several fronts
 - Technical studies (pedestal calibratio, noise, mip calibration, ...)
 - Data analysis
 - Simulation

