SiWEcal - LCIO Event building

Hector Garcia Cabrera

Development of an event building for the SiWEcal technological prototype in the LCIO format

Current SiWECal event building process

Currently the process of event building follows the next steps:

- The DAQ produces ASCII files with all chip readouts.
- The ASCII files are converted into RawROOT files with all the information in a TTree.
- RawROOT files are converted into ROOT with events built in it.

However the standard ILC Software uses the LCIO data format. Ideally the DAQ produces a binary file that it is directly converted into a LCIO file.

Build algorithm steps

Hit Construction:

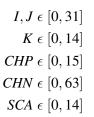
Loop over the *RawROOTFile* and construction of the ECal hit with mapping, pedestal substraction and calibration. Dropping the following cases:

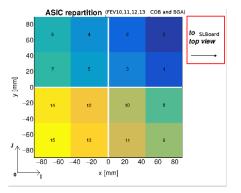
- Layers with slot = -1
- Chips with chipid = -1
- Hits with $gain_hit_high <= 0$
- Masked hits
- Very low MIP values < 0.5

BCID Map construction and merging:

Each ECal hit is appended to a vector in a BCID map using the *corrected_bcid* value taking into account the clock overflow. Then the BCIDs are merged into a single event concatenating a window of 3 BCIDs. The final BCID of the event is the one in the map with maximum number of hits. Dropping events with large number of hits > 8000

Build algorithm steps


Construction and writing of the LCEvent:


LCIO File (default = SiWEcal_TB2021_\${RunNumber}.slcio)

- \rightarrow LCHeader
 - $| \rightarrow RunNumber$
 - $| \rightarrow detectorname = ECAL15Slabs_2021$
- $\rightarrow LCEvents$
 - $| \rightarrow Eventnumber$
 - $| \rightarrow BCID$
 - $| \rightarrow Parameters()$
 - $| \rightarrow SumEnergy$
 - $| \rightarrow NLayers$
 - $| \rightarrow NChips$
 - \rightarrow *LCCollection* (default = ECalEvents, type = CalorimeterHit)
 - \rightarrow *Hit_Energy*
 - $| \rightarrow Hit_Time$
 - $| \rightarrow Hit_Position$
 - \rightarrow CellIDEncoding : "I:5,J:5,K:4,CHP:4,CHN:6,SCA:4"

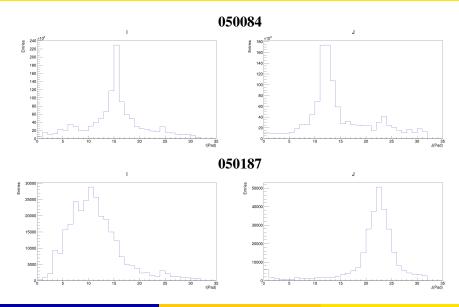
Details - ECal Hit position

Hits position \overrightarrow{x} are the center of the pad.

Pedestals:

The current version uses the updated format of the pedestals then $HG = Charge_hg - pedestal$. The value of the error is stored in the pedestal map, currently not used but taken into account if needed in the future.

Calibration:


If the mpv value from calibration is less than the *mip_cutoff* = 0.5 or currently if the error of the channel is negative (Failed fit) then the channel is also dropped. Finally E = HG/mpv

The event builder creates a ROOT File with simple histograms to check that everything run correctly and quickly detect noise or anomalies and access saved statistics.

ROOT File (default = LogROOT_ECalEventBuilding_runNumber.root)

- $| \rightarrow NHitsPerReadout$
- $| \rightarrow NHitsPerEvent$
- $| \rightarrow NHitsPerLayer$
- $| \rightarrow NHitsPerChip$
- $|\rightarrow NLayers$
- $|\rightarrow NChips$
- $| \rightarrow I, J and K$

Log ROOT File. MIPScan run: 050084 - W22degree5GeV: 050187

Hector Garcia Cabrera (CIEMAT)

Log ROOT File. MIPScan run: 050084 - W22degree5GeV: 050187

NHits Per Event NHits Per Event Entries Entries 10' 10⁵ 10² NHits к к Entries 18 20 K(Pad) K(Pad)

Hector Garcia Cabrera (CIEMAT)

SiWECal - LCIO

NHits

Conclusion

Advantages:

- LCIO is the standard format of the ILC collaboration. Future events whith synchronization between different modules will use this common framework.
- Adapting prototype simulation analysis, in the context of ilcsoft framework, to beam test data will require simple changes of the processors.
- Access to all high level analysis processor already implement in ilcsoft.

Disadvantages:

- Fast and testing analysis is cumbersome due to the setup of the Marlin Processors. Particularly for newcomers.
- LCIO files are usually heavier than simple ROOT files. *NEXT STEPS*:
 - Start the conversion chain from the ASCII file.
 - Study and include error propagation

Backup

Compiling and running

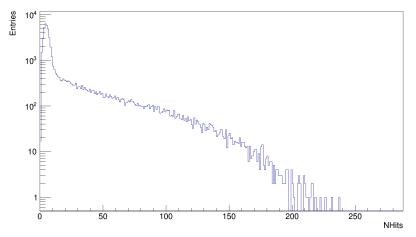
The software can be found in the SiWECAL-LCIO-Analysis repository. The code of the event builder is in the *eventbuilding* folder. **Building:**

- source \${ILCSoftPath}/init_ilcsoft.sh (REQUIRED) (VERSION v02_02_02)
- run ./script/build.sh [Full]

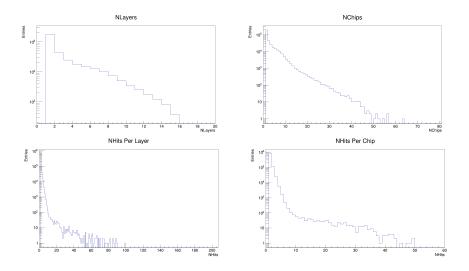
Dependencies: CMake >= 2.6 and C++17

Produces an *app* folder with the executable *ECal_EventBuilding*.

Compiling and running


Running: *./app/ECal_EventBuilding –help* for a description of all options. The only one required is the name of the RawROOT file.

hecgc@hecgc-GL62M-7REX [~/Physics/Repos/SiWECAL-TB-analysis/eventbuilding] (slboard_TB2021_ILCSoft) \$./app/ECal_EventBuilding --help Usage: ECal EventBuilding [OPTION...] -i INPUTFILENAME Program to convert the RawROOTFiles from SiWEcal Beam Test 2021 -c, --comissioning folder=COMFOLDER Path to the comissioning folder --configuration file=CONFIG Laver configuration of the calorimeter -i, --in file name=INFILENAME Input file name -m, --exc mode=EXCMODE Execution mode of this program: default -> executes with minimal output ; debug -> executes with all output : setup -> only reads and prints all the input files --mapping file=MAPFILE Mapping file name --mapping file cob=MAPFILECOB Mapping file name for the cob layers --masked file=MASKFILE Masked channels file name --mip calibration file=MIPFILE Mip calibration file name -n. --max entries=MAXENTRIES Number of entries to process from the input file -o. --out file name=OUTFILENAME Output file name --out col name=OUTCOLNAME Output collection name --pedestals file=PEDFILE Pedestals file name -r. --run number=RUNNUMBER Run number. By default -1 -t. --in tree name=INTREENAME Input TTree name -?, --help Give this help list --usage Give a short usage message -V. --version Print program version Mandatory or optional arguments to long options are also mandatory or optional for any corresponding short options.


Report bugs to Hector.Garcia2@ciemat.es -- NO SPAM.

Log ROOT File. MIPScan run: 050084

NHits Per Readout

Log ROOT File. MIPScan run: 050084

