Simulation study for design optimisation of GEM module

Keita Yumino on behalf of the LCTPC Asia

Mar 09, 2022

Inside of ILD-TPC

and read out as electrical signal

Introduction

© Rey.Hori/KEK

Introduction

Gas Electron Multiplier (GEM)

- large number of holes with a diameter of several tens to hundreds of μm
- plate-like structure with copper electrodes on both sides of an insulator

By applying a high voltage across a GEM a high electric field is formed

Electric field in the region of the hole

many ionised electrons are generated repeatedly by ionising collisions with the gas molecules \rightarrow avalanche

polyimide liquid crystal polymer ...

З

Operating principle of TPC

A charged particle ionises the atoms of the gas mixture along its trajectory

z component is obtained from drift time \Rightarrow 3-dimensional (x, y, z) information

in the E-field towards the readout pad

gas-amplified and read as signal \Rightarrow <u>2-dimensional (x,y) information</u> **Content of** Nakajima-san's talk

"Study of the spatial resolution of a GEM-based TPC"

and Aoki-san's talk

"The spatial resolution result of the first beam test of a ILD-TPC end-plane readout module with a gating foil for the ILC"

Content of my talk

Introduction

The aim of this study-Development of a high-performance GEM as a detector for LCTPC

Our Asian-GEM has some problems

- discharge,
- need for support structure, and
- gas gain non-uniformity

Thickness dependence of gain

From previous study, gas gain strongly depends on the thickness of GEM

Large gas gain non-uniformity

 \rightarrow due only to effect of thickness?

reached > 50 % difference

arxiv:1701.05421

Thickness dependence of gain

7

If the average gas gain is changed depending on the location the very HIGH high-voltage must be applied to obtain a sufficiently large signal at a low gas gain region

Need to reduce the thickness dependence of the gas gain on the location.

Introduction

This study is performed to investigate the conditions under which the thickness dependence of the gas gain is constant.

Process

- •Find the plateau in the thickness dependence of gas gain,
- •Find the "Stability conditions", and
- •Verify the theory by comparing with Garfield++.

- a toolkit for the simulation of gaseous detectors

First, we assume that Legler's model¹ is correct Legler's model have 2 assumptions

- so as to gain enough energy for ionisation from the E-field.
- the probability of ionising collision being constant 2. after the electron having reached the threshold energy like a step function probability
 - constant

^LSTATISTICS OF ELECTRON AVALANCHES AND ULTIMATE RESOLUTION OF PROPORTIONAL COUNTERS

Assumption

ionising collisions may occur <u>only after the electron flying over a minimum distance</u>

We have equation of gas gain variation $\frac{dG}{G}$

$$\frac{dG}{G} = \left(\frac{1}{1+\chi+\eta}\right)$$

for stable operation, $\frac{dG}{G} = 0 \text{ is required}$

Therefore, we have the "Stability condition"

heory

$$\begin{bmatrix} 1 - \frac{\epsilon}{\sigma_0} \left(\frac{\partial \sigma_0}{\partial \epsilon} \right) \end{bmatrix} \chi \ \delta \left(\frac{d\Delta}{\Delta} \right)$$
where
 $\epsilon = \frac{E}{n}, E = \frac{V/\Delta}{n}, \ \delta = \frac{V}{U_0}, \ \eta = n\Delta \frac{U_0}{V} \sigma_0(\epsilon), \chi$
 Δ : thickness of GEI

the coefficients can be deleted by choosing these parameters.

 σ_0 : effective cross section ϵ : scaling variable =E/n

We need to check whether our theory is only correct in the <u>uniform</u> electric field or not.

⇒Parallel plate geometry

Theory $\frac{dG}{G} = \left(\frac{1}{1+\chi+\eta}\right) \left| 1 - \frac{\epsilon}{\sigma_0} \left(\frac{\partial\sigma_0}{\partial\epsilon}\right) \right| \chi \,\delta\left(\frac{d\Delta}{\Delta}\right)$ where $E = \frac{E}{n}, E = \frac{V}{\Delta}$

uniform electric field

uniform electric field

Thickness dependence of gas gain

Parallel plate geometry

The plateau area was found in the range of 10 $\mu m \sim 20 \ \mu m$

130 kV/cm

this intersection point correspond to the thickness

Result

 $\sim 18 \ \mu m$

Stability condition is satisfied!!

In the case of parallel plate, "Stability condition" was satisfied $\partial \sigma_0$ $\partial \epsilon$

Next Step In the case of GEM

we found the equation

$$\frac{dG}{G} = \left(\frac{1}{1+\chi+\eta}\right) \left[1-\frac{\epsilon}{\sigma_0}\left(\frac{\partial\sigma_0}{\partial\epsilon}\right)\right] \chi \,\delta\left(\frac{d\sigma_0}{\partial\epsilon}\right)$$

by assuming the <u>uniform</u> electric field

in the plateau region

 $E_D = 2 \text{ kV/cm}$

 $E_I = 6kV/cm$

Thickness dependence of gain: Asian GEM

The plateau area was found in the range of 10 $\mu m \sim 40 \ \mu m$

cf. CERN GEM:thickness 50 μm ($E \sim 60$ kV/cm)

e.g. VCI2019, Francesco Fallavollita

Electric Field [V/cm]

The plateau area was found in the range of 10 $\mu m \sim 40 \ \mu m$

> NO intersection point was found → Is uniform Electric field assumption not correct?

Result

Alkhazov's Theory

more generally J(1) =

Once $p_i(l)$ is decided, α will be decided. (α is functional of $p_i(l)$) — model-dependent

- Legler's model : p_i Snyder's model: p_i

 p_i depends on *l* and other variable β

$$dl p_i(l) e^{-\alpha l} = \frac{1}{2}$$

$$(l) = a_i \ e^{-a_i(l-x_0)} \ \theta(l-x_0)$$
$$(l) = \alpha \ e^{-\alpha l}$$

where

 $G = \exp(\Delta \cdot \alpha[p_i(l,\beta)])$

 Δ : thickness of GEM

Calculation of Townsend coefficient α

the probability for the 1st ionizing collision $J(1) = \int_0^\infty dl \ p_i(l) \ \exp^{-\alpha l} = \frac{1}{2}$

 $p_i(l)$: the probability of 1st ionising collision taking place at the distance *l* from the origin of the seed electron.

α : Townsend coefficient*l* : Free path

 α , l, $p_i(l)$ depend on electric field

The value of α which makes the integral $\frac{1}{2}$ is the α for that electric field strength. parallel plate Townsend coefficient [cm 2500 calculated α ---- magboltz α 2000 1500 1000 500 0 50 100

Electric field [V/cm]

Analytically calculated result is reasonable agreement with magboltz result!

Data set for GEM

The data set was prepared using a parallel plate with different gaps from 16 um to 130 um

$p_i(l)$ as a function of E, l

 $p_i(l)$: the probability of 1st ionising collision taking place at the distance l from the origin of the seed electron.

Inside Garfield++, the gas gain is calculated as $G = \exp \int_{0}^{\infty} \alpha(E) \, ds$ along path of electron

(1)Calculate the electric field $E(s, x_0, y_0)$ (2)Get the value of α (3)Calculate $\int_{0}^{\infty} ds \ \alpha \left(E(s, x_0, y_0) \right)$ along the electric field lines s

If we use the α for all possible values of the electric field inside the GEM hole, the value of the gas gain should match the Garfield++ output

Theory: GEM geometry

Summary and plan

- Derived the equation of gas gain variation and found the "Stability conditions"
- Found the plateau in the thickness dependence of gas gain
- As a functional of $p_i(l)$, the value of Townsend coefficient α when the integral is 1/2 was found to be in reasonable agreement with the result of magboltz.
- Calculate the gain analytically by using these results,

(1)Calculate the electric field $E(s, x_0, y_0)$

 (x_0, y_0)

②Get the value@E • Mean free path *l* • Transverse diffusion D_T $\sigma = D_T \sqrt{l}$ • Townsend coefficient α

(3)Calculate the standard deviation of electron diffusion(?) σ

Z

(4)Gaussian-smear drift electrons with σ

in the plane perpendicular to the electric field vector

In this way, we can include the process of electrons jumping to neighboring electric field lines by diffusion

Z

- Repeat the process $(1) \sim (5)$
 - and calculate $\int_{-\infty}^{\infty} ds \ \alpha \left(E(s, x_0, y_0) \right)$ **J**() along the electric field lines s

Calculated gain is too high ~ $\mathcal{O}(10^{24})$ due to the path that pass through the center of the GEM hole?

Compare gas gain

Source of failure

In order to get Cross section, looked at free path distribution after each collision this does <u>not</u> involve the probability of ionising collision always cause avalanche every step →increases like an "avalanche" literally Proper way to calculate gas gain we need to consider the probability of ionising collision whether each electrons cause avalanche or not for each step

Correct way

To include the probability of encountering the ionisation collision for each step

we have to use Townsend coefficient α instead of the mean free path l

$$G(x_0 y_0) = exp\left[\int_0^\infty ds \ \rho \sigma \left(\frac{E(s, x_0, y_0)}{\rho}\right)\right]$$

with $\rho \sigma = \frac{1}{l}$

$$\rightarrow \quad G(x_0 y_0) = exp\left[\int_0^\infty ds \ \alpha \left(E(s, x_0, y_0)\right)\right]$$

with
$$\alpha = a_i(-1 + 2e^{-\alpha x_0})$$

 $x_0 = \frac{U_0}{E}$ U_0 : ionisation potential
 $a_i = \rho\sigma$

To calculate gas gain

$$G(x_0 y_0) = exp\left[\int_0^\infty ds \ \alpha \left(E(s, x_0, y_0)\right)\right]$$

need to solve for
$$\alpha$$

 $\alpha = a_i(-1 + 2e^{-\alpha x_0})$

however, this cannot be solved analytically

- solved by using Newton's method

townsend coefficient $\alpha = a_i(-1 + 2e^{-\alpha x_0})$ $a_i = \rho \sigma$ [C1

> Legler has shown, that with an appropriate choice of the model parameter U0 (Uo \approx Ui where Ui is the first ionisation potential) the calculated distributions are in good agreement with experimental spectra.

m⁻¹]
$$X_0 = \frac{U_0}{E}$$
 [cm]

 U_0 : first ionisation energy (tune parameter)

G.D. ALKHAZOV 1970

first ionisation potential in argon

 $IP = 127109.842(4) \text{ cm}^{-1} (15.759610 \text{ eV})$

Precision VUV spectroscopy of Ar I at 105 nm from

I Velchev et al 1999 J. Phys. B

Behaviour of Calculated α is different from the result of magboltz output

also the value of tuned U_0 @E=60 kV/cm is too high

we conclude that the assumption "Legler's model was correct"

after some calculation, we obtain

$$\begin{split} \frac{\partial}{\partial \Delta} & \ln G = \alpha [p_i(l,\beta)] + \Delta \cdot \frac{\int_0^\infty dl \left(\frac{\partial}{\partial \Delta} p_i(l,\epsilon)\right) e^{-\alpha [p_i(l,\epsilon)]l}}{\int_0^\infty dl \ p_i(l,\epsilon) l e^{-\alpha [p_i(l,\epsilon)]l}} \\ &= \alpha [p_i(l,\beta)] + \Delta \cdot \frac{\int_0^\infty dl \ \left(\frac{\partial}{\partial \Delta} \exp\left(-\int_{x_0}^l dl' \rho \sigma(El')\right) \ \rho \sigma(El)\right) \ e^{-\alpha [p_i(l,\epsilon)]l}}{\int_0^\infty dl \ \exp\left(-\int_{x_0}^l dl' \rho \sigma(El')\right) \ \rho \sigma(El) l e^{-\alpha [p_i(l,\epsilon)]l}} \end{split}$$

need to calculate them to find "Stability condition"

$$\int_{0}^{\infty} dl \, \exp\left(-\int_{x_{0}}^{l} dl' \rho \sigma(El')\right) \rho \sigma(El) l e^{-\alpha[p_{i}(l,\epsilon)]l}$$
$$\int_{0}^{\infty} dl \, \left(\frac{\partial}{\partial \Delta} \exp\left(-\int_{x_{0}}^{l} dl' \rho \sigma(El')\right) \rho \sigma(El)\right) e^{-\alpha[p_{i}(l,\epsilon)]l}$$

 $\mathcal{D}_i(l,\epsilon)]l$

$$\frac{\partial}{\partial \Delta} \ln G = \alpha [p_i(l,\beta)] + \Delta \cdot \frac{\partial \alpha [p_i(l,\beta)]}{\partial A}$$
with the condition
$$\frac{\partial}{\partial \Delta} \ln G = 0$$

we find the general form of "Stability Condition"

$$\frac{\partial \alpha[p_i(l,\beta)]}{\partial \Delta} = \frac{\alpha[p_i(l,\beta)]}{\Delta} \quad \text{and} \quad$$

similar form with "o

 $p_i(l,\beta)$ $\partial \Delta$ $\frac{p_i(l,\beta)]}{\partial \Delta} \equiv \frac{\int_0^\infty dl \left(\frac{\partial}{\partial \Delta} p_i(l,\epsilon)\right) e^{-\alpha[p_i(l,\epsilon)]l}}{\int_0^\infty dl p_i(l,\epsilon) l e^{-\alpha[p_i(l,\epsilon)]l}}$

$\partial \alpha [p_i(l, l)]$	$\beta)] \ \alpha$	$[p_i(l,\beta)]$
$\partial \epsilon$		ϵ
1 .1??	$\partial \sigma_0$	σ_0
la one	$\partial \epsilon$	- <i>E</i>

$$J(1) = \int_{0}^{\infty} dl \ p_{i}(l) \ e^{-\alpha l} = \frac{1}{2}$$

Once $p_i(l)$ is decided, α is will be decided. (α is functional of $p_i(l)$)

- Legler's model : p_i Snyder's model: p_i
- p_i depends on *l* and other variable $G = \exp(\Delta \cdot \alpha [p_i(l,$

$$\frac{\partial}{\partial\beta} \ln G = \frac{\partial}{\partial\beta} (\Delta \cdot \alpha [p_i(l,\beta)]) \qquad \text{for thickness}$$

$$= \frac{\partial\Delta}{\partial\beta} \cdot \alpha [p_i(l,\beta)] + \Delta \cdot \frac{\partial\alpha [p_i(l,\beta)]}{\partial\beta} \qquad -$$

$$p_i(l) = a_i \ e^{-a_i(l-x_0)} \ \theta(l-x_0)$$

$$p_i(l) = \alpha \ e^{-\alpha l}$$

$$\beta \qquad \text{where}$$

$$\beta)]) \qquad \Delta: \text{ thickness of GEM}$$

s dependence of gas gain = Δ , V : fixed $\longrightarrow \qquad \frac{\partial}{\partial \Delta} \ln G = \frac{\partial \Delta}{\partial \Delta} \cdot \alpha [p_i(l,\beta)] + \Delta \cdot \frac{\partial \alpha [p_i(l,\beta)]}{\partial \Delta}$

for thickness dependence of gas gain

$$\frac{\partial}{\partial \Delta} \ln G = \frac{\partial \Delta}{\partial \Delta} \cdot \alpha [p_i(l,\beta)] + \Delta \cdot$$

$$\int_{0}^{\infty} dl \ p_{i}(l,\epsilon) \ e^{-\alpha[p_{i}(l,\epsilon)]l} = \frac{1}{2} \qquad \text{where}$$

$$\begin{split} \frac{d}{d\beta} \int_{0}^{\infty} dl \ p_{i}(l,\epsilon) \ e^{-\alpha[p_{i}(l,\epsilon)]l} &= 0 \\ \int_{0}^{\infty} dl \ \left(\frac{\partial}{\partial\beta} p_{i}(l,\epsilon)\right) \ e^{-\alpha[p_{i}(l,\epsilon)]l} + \int_{0}^{\infty} dl \ p_{i}(l,\epsilon) \left(\frac{\partial}{\partial\beta} e^{-\alpha[p_{i}(l,\epsilon)]l}\right) &= 0 \\ \int_{0}^{\infty} dl \ \left(\frac{\partial}{\partial\beta} p_{i}(l,\epsilon)\right) \ e^{-\alpha[p_{i}(l,\epsilon)]l} &= -\int_{0}^{\infty} dl \ p_{i}(l,\epsilon) \left(\frac{\partial}{\partial\beta} e^{-\alpha[p_{i}(l,\epsilon)]l}\right) \\ &= \int_{0}^{\infty} dl \ p_{i}(l,\epsilon) le^{-\alpha[p_{i}(l,\epsilon)]l} \frac{\partial\alpha[p_{i}(l,\epsilon)]}{\partial\beta} \end{split}$$

$$\frac{\partial \alpha[p_i(l,\beta)]}{\partial \Delta}$$

we need to calculate this term

$$\epsilon = \frac{V}{\Delta \rho} = \frac{E}{\rho} \qquad E = \frac{V}{\Delta}$$

$$\int_{0}^{\infty} dl \left(\frac{\partial}{\partial\beta}p_{i}(l,\epsilon)\right) e^{-\alpha[p_{i}(l,\epsilon)]l} = -\int_{0}^{\infty} dl p_{i}(l,\epsilon) \left(\frac{\partial}{\partial\beta e^{-\alpha[p_{i}(l,\epsilon)]l}}\right)$$
$$= \int_{0}^{\infty} dl p_{i}(l,\epsilon) le^{-\alpha[p_{i}(l,\epsilon)]l} \frac{\partial\alpha[p_{i}(l,\epsilon)]}{\partial\beta}$$

$$\frac{\partial \alpha[p_i(l,\epsilon)]}{\partial \beta} = \frac{\int_0^\infty dl \left(\frac{\partial}{\partial \beta} p_i(l,\epsilon)\right) e^{-\alpha[p_i(l,\epsilon)]l}}{\int_0^\infty dl p_i(l,\epsilon) l e^{-\alpha[p_i(l,\epsilon)]l}}$$

for thickness dependence of gas gain V:fixed

$$\beta = \Delta,$$

$$\frac{\partial \alpha[p_i(l,\epsilon)]}{\partial \Delta} = \frac{\int_0^\infty dl \left(\frac{\partial}{\partial \Delta} p_i(l,\epsilon)\right) e^{-\alpha[p_i(l,\epsilon)]l}}{\int_0^\infty dl p_i(l,\epsilon) l e^{-\alpha[p_i(l,\epsilon)]l}}$$

For the general discussion, we need to find a model-independent form of $p_i(l, \epsilon)$

$$\int_{0}^{\infty} dl \ p_{i}(l,\epsilon) \left[\frac{\partial \alpha[p_{i}(l,\beta)]}{\partial \Delta} \right] \\ \int_{0}^{\infty} dl \ p_{i}(l,\epsilon) \left[e^{-\alpha[p_{i}(l,\epsilon)]l} \right]$$

In the first place, the self-consistent equation p(z) denotes the probability distribution function of gas gain

$$p(z) = \frac{1}{\alpha z} \int_{z}^{\infty} dz' \int_{0}^{z'} dz'' p(z'') \ p(z' - z')$$

 $p_i(l,\epsilon) = \exp\left(-\int_{x_0}^l dl' \rho \sigma(El')\right) \rho \sigma(El)$

$$\begin{split} \frac{\partial}{\partial \Delta} & \ln G = \alpha[p_i(l,\beta)] + \Delta \cdot \frac{\int_0^\infty dl \left(\frac{\partial}{\partial \Delta} p_i(l,\epsilon)\right) e^{-\alpha[p_i(l,\epsilon)]l}}{\int_0^\infty dl p_i(l,\epsilon) l e^{-\alpha[p_i(l,\epsilon)]l}} \\ &= \alpha[p_i(l,\beta)] + \Delta \cdot \frac{\int_0^\infty dl \left(\frac{\partial}{\partial \Delta} \exp\left(-\int_{x_0}^l dl' \rho \sigma(El')\right) \rho \sigma(El)\right) e^{-\alpha[p_i(l,\epsilon)]l}}{\int_0^\infty dl \exp\left(-\int_{x_0}^l dl' \rho \sigma(El')\right) \rho \sigma(El) l e^{-\alpha[p_i(l,\epsilon)]l}} \end{split}$$

need to calculate them to find "Stability condition"

$$\int_0^\infty dl \, \exp\left(-\int_{x_0}^l dl' \rho \sigma(El')\right) \rho \sigma(El) l e^{-\alpha[p_i(l,\epsilon)]l}$$

$$\int_0^\infty dl \, \left(\frac{\partial}{\partial\Delta} \exp\left(-\int_{x_0}^l x_0\right)\right) dl \, dl = \int_0^\infty dl \, dl \, dl = \int_{x_0}^\infty dl \, dl \, dl = \int_{x_0}^\infty dl \, dl = \int_{x$$

 $dl'\rho\sigma(El')\right)\rho\sigma(El)\right)e^{-\alpha[p_i(l,\epsilon)]l}$