

F

Study of the spatial resolution of a GEM based TPC

NAKAJIMA Jurina^A, FUJII Keisuke^B, YONAMINE Ryo^B, KOBAYASHI Makoto^B, MATSUDA Takeshi^B, OGAWA Tomohisa^B, AOKI Yumi^A, YUMINO Keita^A, NARITA Shinya^C, NEGISHI Kentaro^C, SHOJI Aiko^C, SUGIYAMA Akira^D, FUSAYASU Takahiro^E, TAKAHASHI Tohru^F, WATANABE Takashi^G, KATO Yukihiro^H, IKEMATSU Katsumasa^I, SETTLES Ron^J, TIAN Junping^K, ARAI Daisuke^L, COLAS Paul^M, GANJOUR Serguei^M, DIENER Ralf^N, SCHÄFER Oliver^N, KAWADA Shin-ichi^N, MÜLLER Felix^N, JÖNSSON Leif^O, MJÖRNMARK Ulf^O, QI Huirong^P, KIHARA Daisuke^Q and LCTPC collaboration

SOKENDAI^A, KEK^B, Iwate Univ.^c, Saga Univ.^D, Nagasaki Inst. of Applied Science^E, Hiroshima Univ.^F, Kogakuin Univ.^G, Kindai Univ.^H, Tohoku Univ.^I, MPI^J, Univ. of Tokyo^K, Fujikura Ltd^L, Université Paris-Saclay^M, DESY^N, Lund Univ.^o, Institute of High Energy Physics^P, Seigen Univ.^Q

9, March 2021

Time Projection Chamber (TPC)

arXiv[1306.6329], ILC Technical Design Report: Volume 4, Part III

Two main roles at the TPC:

Momentum measurement

Measure the curvature radius of the tracks in B=3.5T and drift length 2.2 m $\frac{\sigma_{p_{\perp}}}{2} \simeq 1 \times 10^{-4} p_{\perp} [\text{GeV/c}]$

There are about 200 points of position resolution $\sigma_x \simeq 100 [\mu m]$

 \Box Particle identification measured by dE/dx

 p_{\perp}

Incident angle effect on the spatial resolution

R.Yonamine,K.Fujii [https://doi.org/10.1088/1748-0221/9/03/C03002]

Analytic expressions for \hat{N}_{eff}

R.Yonamine, K.Fujii [https://doi.org/10.1088/1748-0221/9/03/C03002]

$$\hat{N}_{eff} \approx \left[\left\langle \sum_{i=1}^{N} \left\langle \left(\frac{\sum_{j=1}^{k_i} G_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{k_i} G_{ij}} \right)^2 \right\rangle_G^{k_i, \sum_{i=1}^{N} k_i} \right\rangle_{N, k} \right]^{-1}$$

N : the number of primary ionization ${f clusters}$

 $\left(N_{eff}^{\text{w/o}\,G} \simeq \left[\left\langle \frac{1}{\sum_{i} k_{i}} \right\rangle_{N,h} \right]^{-1} \right)$

G: Gas gain

 k_i : the number of seed electrons orginating from the i-th primary cluster

 \hat{N}_{eff} can be decomposed into two parts, due to cluster size fluctuation and gas gain fluctuation.

2016 beam test of Asian GEM modules

The original purpose of the beam test was to compare performance of the Asian modules with and without the gating foil.

<u>Set up</u>

- ▶ Electron Beam = 5 GeV
- ▶ B = 1 T
- ▶ T2K gas (Ar:CF4:iso-C4H10 = 95:3:2)
- ▶ Analysis frame work : Marlin TPC
- ▶ Data set used : φ= -20°, 0°, 10°, 20°

φ angle calibration

The readout pad rows are curved to cover the fan-shaped anode plane of each module

Spatial Resolution at different drift distances as a function of ϕ (beam test data)

The function fits the data reasonably well.

 $\rightarrow \phi$ dependance is consistent with the theory.

We get $\hat{N}_{e\!f\!f}$ from fit results.

Beam test data results- \hat{N}_{eff}

TPC simulator

We have developed a new TPC simulator

Comparison of an approximate formula with the \hat{N}_{eff} value as defined by the fitting function

Approximate formula reproduces the fitted result quite well

\hat{N}_{eff} w/ and w/o gas gain fluctuation

11

Comparison beam test with simulation - \hat{N}_{eff}

Summary

↔ We used Asian GEM beam test data to confirm the **angular pad effect**. →the φ dependence became consistent with the theory after calibration

The TPC simulation was improved to take into account the some effects \rightarrow the **gas gain fluctuation** has significant effect on \hat{N}_{eff}

 \approx The measured and simulated \hat{N}_{eff} agree to about 5~10%.

Next step

☆ The electrons ionisation process is carried out in Heed, a Garfield++ package.
(←implemented, but undergoing minor modifications.)

Fundamental principle of TPC

Charge-weighted hit position

The small number of dead readout channels

How to determine ϕ

#20156, w/o gating foil, $\phi = 20^{\circ}$, B=1T, row =16

jurina@post.kek.jp

Incident angle effect on the spatial resolution

$$\sigma_x^2(Z; w, L \tan \phi, C_d, N_{eff}, \hat{N}_{eff}, [f]) = [A] + \frac{1}{N_{eff}} [B] + [C] + \frac{1}{\hat{N}_{eff}} [D]$$

Displacement due to diffusion for a single electron

Electric noise

$$[C] = \left(\frac{\sigma_E}{\bar{G}}\right)^2 \left\langle \frac{1}{N^2} \right\rangle_N \sum_a (aw)^2$$

Angular Pad effect $\frac{1}{\hat{N}_{eff}}[D] = \frac{L^2 \tan^2 \phi}{12\hat{N}_{eff}} \quad L: Pad height$

R.Yonamine,K.Fujii [https://doi.org/10.1088/1748-0221/9/03/C03002]

Schematic image of the spatial resolution as a fuction of drift length

N_{eff} in typical model

4 GeV pion, pad pitch 6mm, pure Ar

