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Particle Flow Calorimetry

● Jet energy resolution at future precision e+-e- colliders such as ILC 
must produce a di-jet invariant mass resolution comparable to the 
weak vector bosons' decay width (~3% in the range of jet energies 
50-200 GeV) [1]

● Problem:  typical jet energy resolution of ‘traditional’ calorimetry is 
much worse than required at ILC.

● Solution: Particle Flow Calorimetry (PFC) [2]:

● measure momentum of charged particles (~60% of jet energy) 
using tracker;

● use highly granular calorimeters  to measure remainder of 
energy of photons and neural hadrons;

● Use sophisticated clustering algorithms (e.g. Pandora Particle 
Flow Algorithm, PPFA) to associate tracks to energy depositions 
in the highly granular calorimeters;   

[1] M. A. Thomson. ‘Particle Flow Calorimetry and the PandoraPFA Algorithm’. NIMA, pp. 25–40. doi: 10.1016/j.nima.2009.09.009.
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Hadron Calorimetry and Software Compensation

● When a hadron interacts with matter, it may undergo a hard interaction and induce a 
hadron shower; 

● A hadron shower has two components: an electromagnetic (EM) and a hadronic 
(HAD) fraction; 

● Up to 40% of the deposited energy in the HAD fraction is 'invisible', and fluctuates 
significantly from event to event; 

● Calorimeter response to hadrons is split into two components: 
an EM response (e) and a HAD response (h). Typically, e>h;

● Software compensation (SC) is the equalisation of e and h using:

–  information from a recorded event and;

–  a specially designed algorithm.

● SC found to improve jet energy resolution achieved by Pandora PFA by enabling more 
accurate association of tracks to energy deposits [2];

TAKE HOME MESSAGE:
better SC → 

more accurate energy clustering for PFC→ 
 better jet energy resolution → 

more precise measurements at future e+-e- colliders
  

Red line < blue line 
→ compensation 

improves jet energy 
resolution.

[2] CALICE Collaboration, “A new approach to software compensation for the CALICE AHCAL,” tech. rep., 2010.
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CALICE Analogue Hadronic CALorimeter (AHCAL)

● AHCAL is a Fe-Sc highly granular calorimeter prototype designed for Particle Flow.

● Calorimeter has ~22,000 individual SiPM-on-tile readout channels → highly granular;

● AHCAL is a five dimensional, non-compensating calorimeter (e/π = 1.25-1.4):

● Five-dimensional calorimeter:  measures energy density of hadron showers in space and 
time, with up to  100 ps time resolution allowed by hardware for each active cell (3 x 3 x 
0.3 cm3). 

– hadron showers develop with a dense EM core and sparse HAD halo → 

AHCAL can exploit spatial development of hadron showers for SC;

– neutron fraction of hadron shower directly proportional to HAD fraction →

indirect energy depositions from neutrons delayed  compared to first nuclear 
interaction by hadron by 10-100 ns in steel →

 AHCAL can exploit temporal development of hadron showers for SC;

             TAKE-HOME MESSAGE:
spatial & temporal energy density information 

available from AHCAL may improve SC 
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Biasing of SC Models

● Machine learning (ML) can be used to build a bespoke software 
compensation algorithm for a specific detector.

● Previous study using ML to build an SC algorithm for AHCAL [3] 
showed two undesirable effects:

– Interpolation Failure: biasing of model to specific particle energies; 
– Extrapolation Failure: biasing to the lowest and highest of the 

training range of energies; 

   
● Reason: 

– training samples of hadron shower data are always biased to the 
energies of the interacting particle;

– EM/HAD fraction of event is unknown →  inferred from the 
calorimeter response. 

– Algorithm easily biases to the energy range upon which it is 
trained.

  [3]  E. Buhmann and E. Garutti, “Deep learning based energy reconstruction for the CALICE AHCAL”

Un-physical
calorimeter 
resolution

Non-linear 
response
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Explicitly Reducing Bias By Model Design

1. Hadron shower 
event in highly-

granular calorimeter 
is split into 

individual active 
cells. 

2. K-nearest neighbour 
‘clusters’ found for each 

individual active cell.
3. SC model operates 

independently on 
each ‘cluster’. 4. Modified active cell ‘energy’ 

produced by model for each 
local cluster.

5. Compensated 
hadron shower 

energy produced 
from sum of model 

outputs.

TAKE-HOME MESSAGE:

● The SC model is explicitly blinded to the mean response 
of the hadron shower, and cannot bias to it.
 

● The attention of the model is explicitly focused on the 
local distribution of energy in space and time → 
highly granular calorimeter information exploited by 
model
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Model and Training Details

● A basic neural network was implemented in PyTorch using the proposed 
solution of operating on individual clusters. 

● The model was compared to an implementation of the CALICE standard 
software compensation method for AHCAL [3] (see upcoming CALICE 
Note for details).

● Control uses total calorimeter response for compensation →  expected to 
be biased.

● 3 models were trained (colour coding shown): 
• control method;
• network method, without timing information;
• network method, with timing information. 

● Models trained and tested using Geant4 simulation of π- hadron showers in 
AHCAL showering in the first 4 layers, + containment cuts (see backup 
slides):

● Loss function:  mean χ2  goodness-of-fit of calorimeter response to known 
momentum. 

[3] CALICE Collaboration, “A new approach to software compensation for the CALICE AHCAL,” tech. rep., 2010.

Samples of Charged Hadron Showers

Sample # Events

Training (10 – 80 GeV, 10 GeV Steps Only) 1.8 x 105

Validation (10 – 80 GeV, 10 GeV Steps Only) 2.1 x 104

Testing (10 – 120 GeV, 5 GeV Steps) 4.0 x 105

Simulation Properties

Particle π-  (negative pion)

Software Geant4, dd4HEP, CALICESoft

Physics List QGSP_BERT_HP

Based On June 2018 SPS Testbeam

Particle Energies 10-120 GeV
 in steps of 5 GeV
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Results: Distributions of Reconstructed Energy

What we expect:
● compensation → the width of the response distributions of AHCAL to  

hadrons should reduce. 

● The ML methods should be able to interpolate/extrapolate SC;

What is shown:
● The distributions of AHCAL response to the testing sample of π- 

hadron showers for different particle energies, with:

● intrinsic calorimeter response (blue);
● control method applied (orange);
● neural network, no timing information applied  (green);
● neural network, with timing information applied (red).

What we learn:

● Network method produces superior resolution for most of training 
range below < 60 GeV;

● Control method gives superior ‘compensation’ to neural network in 
range 60-80 GeV;

● Above 80 GeV, control method seen to bias to training range;

● Neural networks able to compensate effectively above the edge of the 
training range;

trained 
on

 interpolated

 extrapolated

 trained 
on
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Results: Mean % Change in Cell Energy, 
Spatial Dependence

MIP track 
subtraction

leakage correction and stronger spatial dependence of weights
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Lateral Shower Development

Blue: active cell energy attenuated 
Red: active cell energy enhanced

1 ρM  = 24.9 mm,  1 λI =231.1 mm
Temporal correlations in 
backup slides.
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Results: Linearity of Response

What we expect:
● mean calorimeter response after compensation = true particle 

energy  

What is shown:
● Extracted mean ( ) of a Gaussian fit in a ±2 standard deviation μ

range from the mean of the sample at each momentum;

● Colour coding as in previous slide.

What we learn:
● Network methods result in superior linearity of response than 

control method by around 2% on average;

● All SC methods over-correct the reconstructed energy;

● The control method is biased → above 80 GeV, the mean energy is 
not correctly reconstructed. 

● The neural network methods reconstruct mean energy within 2% 
beyond the upper edge of the training range at 80 GeV.
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Results: Calorimeter Resolution

What we expect:
● The energy resolution of the calorimeter should improve by applying SC;

● Resolution function has two terms: 

● ‘stochastic term’, a   →  contribution of invisible energy fluctuations; 
● ‘constant term’, b   →   calibration quality of AHCAL detector;
● both terms should reduce because of compensation.

What is shown:
● Extracted /  of a Gaussian fit in a ±2 standard deviation range from the mean σ μ

of the sample at each momentum studied;

● Fits of resolution equation shown in top-left of figure;

● Control fitted only up to 60 GeV →  bias results in unphysical resolution.

What we learn:

● Neural networks show significant improvement in stochastic term, a:
● - 3 % vs control using spatial information; 
● - 6 % vs control using spatial + 100 ps timing information;

 
● ~5% improvement in the constant term, b, suggests method also calibrates 

detector;
 

● Neural networks show excellent agreement with fit function by comparison to 
control.
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Bonus: Learning Physics From the Machine

What we expect:
● The energy reconstruction should reflect properties of physics/detector;

What is shown:
● Average reconstructed active cell energy vs. original active cell energy, trained 

on data;

● Spline fit applied on orange dashed line. 
 

● Markers: 
● Down arrow: ‘elbow’ points from curvature;
● Up arrow: local minima of the  curve;
● Empty circle: intersection point with purple line.

What we learn:

● Attenuation occurs above 5 MIP, enhancement below:
 → 5 MIP is the AHCAL high gain/low gain switching mode;

● Curve highly nonlinear, with clearly different behaviour for different ‘regions’ 
of energy;

● Points of high curvature observed in strong agreement with the physics energy 
regions predicted in [4], from which the ‘energy binning’ SC idea is derived.  
 

[4] V. Morgunov and A. Raspereza. Novel 3D Clustering Algorithm and Two Particle Separation with Tile HCAL. Dec. 17, 2004. doi: 10.48550/arXiv.physics/0412108. 
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Conclusion

● Software compensation (SC) can improve jet energy resolution in Particle Flow Calorimetery;

● Data-driven SC models have been observed to bias to the particle momenta they are trained on;

● An neural network SC model was devised to both exploit the spatial and temporal energy density of the highly-granular AHCAL 
detector and to overcome the limitations of biasing; 

● The network method outperformed the control:
– superior linearity of response by around 2% with and without timing information;
– superior stochastic resolution improved vs control method by:

•  3% using spatial energy-density event information;
•  6% using spatial + 100 ps resolution timing information

– Network also improved detector calibration → possibility to apply method as a generic detector calibration tool?

● MAIN RESULT: 
– The network method was found not to bias to the training range of energies →

 method can be used to perform compensation with limited simulation/data in an experimental setting. 
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What constitutes an ‘event’ for AHCAL?”

Z Axis:

● Layers of absorber, 
active material and 
sensors (cells);

● 38 active layers.

X-Y Axes:

● Matrices of sensors (cells);

● 24 x 24 cells per layer

Color Axis:

● Energy of cell, in muon-calibrated ‘minimum 
ionising particle’ (MIP) units;

● 22,000 cells altogether;

● Sum of all the cell energies →  reconstructed 
energy of hadron;

Additionally:

● Timing information for each cell in nanoseconds; 

● Not shown in this event display. 
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● Width of theoretical calorimeter response distribution 
proportional to Poissonian missing energy fluctuations 
(under certain assumptions); 

● Ansatz made for training SC algorithms:

 improvement in resolution → compensation

→ minimise mean χ2 goodness-of-fit between 
calorimeter response and known particle momentum

Backup: Biasing of SC Models 

Interpolation Failure

● Model learns to ‘classify’ hadron 
shower by mean response;

Extrapolation Failure

● Model learns the upper/lower 
edges of the training energy range;

       TAKE-HOME MESSAGE:
SC algorithms tend to bias if the model is exposed to the 
mean responses of the training hadron shower events. 
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Control Method

● Standard CALICE SC method used as a control [3];

● Control method is also designed to estimate the energy density of the hadron 
shower, event-by-event, but relies on calorimeter response to do so:

– Individual cell energy distribution binned in deciles (10% probability an 
active cell energy will fall in any given bin, on average)

– Compensation weight for each bin is calculated using a Chebyshev 
polynomial function approximator as a function of calorimeter response:

– Energy falling in each bin scaled by weight;

TAKE-HOME MESSAGE: algorithm weights fraction of energy falling into each 
bin as a function of the calorimeter response to hadrons.

●

[3] CALICE Collaboration, “A new approach to software compensation for the CALICE AHCAL,” tech. rep., 2010.

10% probability of a 
cell having energy in 

each range, on 
average. 
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Backup: Mean % Change in Cell Energy, 
Energy/Temporal Dependence

continuous weighting of active cell energy

threshold for weighting increased at 
>10 ns →  sensitivity to neutron fraction  

O
ri g

in
al

 A
ct

i v
e 

Ce
l l 

En
er

gy

Temporal Development

Blue: active cell energy attenuated 
Red: active cell energy enhanced
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Backup: ‘Natural’ Shower Coordinate System
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Backup: Simulation Details

● Physics list: QGSB_BERT_HP
● Particle:
●  Cuts:

– + Shower Start:  
– + Single track, with position ‘inside’ calorimeter: 
–  + PID MIP Cut:
–  (+ Tail Catcher Leakage Cut:                       , (TCMT) for resolution/linearity 

measurement only)
● Events:

– Training/Validation Sample:
• 10-80 GeV, steps of 10 GeV;
• Training: ~185,000 events (~20,000 events per step) (90% available)
• Validation: ~ 20,000 events (~2,500 events per step)  (10% available) 

– Testing Sample: 
• 10-120 GeV, steps of 5 GeV 
• Testing: ~ 497,000 events (~20,000 events per step) (all available) 
• Testing, + TC cut, ~384,000 events
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Backup: TCMT Cut

What is shown:
Distributions of uncompensated calorimeter response, before and after tail-catcher cut, at 20 GeV and 80 GeV.

What we learn:
Effect of leakage reduced by application of tail-catcher cut at high particle momentum.
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