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Particle Flow Calorimetry

● Jet energy resolution at future precision e+-e- colliders must produce a di-jet 
invariant mass resolution of  ~3% in the range of jet energies 50-200 GeV [1]

● Problem:  typical jet energy resolution of ‘traditional’ calorimetry is much 
worse than required at ILC.

● Solution: Particle Flow Calorimetry (PFC) [2]:

● measure momentum of charged particles (~60% of jet energy) using 
tracker; 

● use highly granular calorimeters  to measure energy of photons and neural 
hadrons;

● Use sophisticated clustering algorithms to associate tracks to energy 
deposits e.g. Pandora Particle Flow Algorithm, PPFA

[1] M. A. Thomson. ‘Particle Flow Calorimetry and the PandoraPFA Algorithm’. NIMA, pp. 25–40. doi: 10.1016/j.nima.2009.09.009.
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CALICE Analogue Hadronic CALorimeter (AHCAL)

● AHCAL is a Fe-Sc highly granular calorimeter prototype designed for Particle 
Flow;

● Calorimeter has ~22,000 individual SiPM-on-tile readout channels → highly 
granular;

● AHCAL is a five dimensional calorimeter: 
– it measures energy density of hadron showers in space and time;
– time resolution: up to  100 ps time resolution allowed by hardware; 

● Spatial and temporal readout is expected to aid in clustering → 

improved sensitivity to hadron shower substructure and development;

             TAKE-HOME MESSAGE:

spatial & temporal energy density information available from AHCAL  
mat improve PFC clustering performance. 
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Machine Learning for PFC Clustering

[2] Shah Rukh Qasim et al. ‘Learning representations of irregular particle-detector geometry with distance-weighted graph networks’. In: The European Physical Journal C 79.7 (July 18, 2019), p. 608. doi:10.1140/epjc/s10052-019-7113-9.

● Confusion defined as:
 ‘the energy misallocated between clusters of energy deposits in PFC’ [1];

● Can occur for two main reasons [1]:
● insufficient sampling points in the calorimeter;
● lack of sophistication in the pattern recognition algorithms.

● Graph neural network techniques have demonstrated excellent performance for 
shower separation [2].

● However: 

● Influence of timing information on confusion unknown;

● AHCAL very highly granular compared to [2] → unknown if models scale. 

Studied in this presentation
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Problem Statement

What We Have: 

 Synthetic ‘Charged-Neutral’ AHCAL Shower Events,
 Separated By An Average of 20 cm

What We Want: 

Fractions of energy belonging to each hadron shower
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Shower Separation Models

● Three published neural network models are applied to shower separation 
for AHCAL: 

• PointNet [3]
• Dynamic Graph Convolutional Neural Network (DGCNN) [4]
• GravNet [2]

  
● Output →  fraction of energy in each cell belonging to each shower;

● Models modified to be able to include full event information;

● Around 2x106  weights overall, with 90-100 weights per sensor. 

[3]  Charles R. Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Apr. 10, 2017. doi: 10 . 48550 / arXiv . 1612 . 00593. 

[4]  Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds. June 11, 2019. doi: 10.48550/arXiv. 1801.07829.

Event display of GravNet applied to hadron 
shower separation in simulated tungsten 

calorimeter [2] 

[2] Shah Rukh Qasim et al. ‘Learning representations of irregular particle-detector geometry with distance-weighted graph networks’. In: The European Physical Journal C 79.7 (July 18, 2019), p. 608. doi:10.1140/epjc/s10052-019-7113-9.
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Training Details

● All networks were implemented in PyTorch Lightning;

● 6 models were trained, one for each model architectures, with and without 
timing information;   

● Hyperparameters of each network optimised using Optuna;
● Events are synthesised from single hadron shower events:

– cuts applied to remove punch-through pions, and for containment. 

– synthetic neutral hadrons produced using topological cut to remove 
minimum ionising track; 

– average shower distance chosen so that 80% of average shower energy 
integrated at that distance (20cm);

– showers ‘overlayed’ from single hadron showers;

● Loss function modified from GravNet paper [2]: 

Samples of Charged-Neutral Pairs

Sample # Events
#Events/
Particle Energy 
Combination

Training 7.2 x 106 ~1250

Validation 8.0 x 105 ~140

Testing 8.0 x 106 ~1400

Simulation Properties

Particle π-  (negative pion)

Software Geant4, dd4HEP, CALICESoft

Physics List QGSP_BERT_HP

Based On June 2018 SPS Testbeam

Particle Energies 5-120 GeV
 in steps of 5 GeV
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Results: Linearity

●   

What is shown:
● Plots: 2D histograms of reconstructed vs. true neutral shower energy for each model. 

● Subplots: ‘most probable value’ (MPV) and mean  confusion energy.

Reconstructed    -   True
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Results: Linearity

What we learn:

● Red Region close to purple dashed line and MPV of subplot:
showers frequently well reconstructed  (i.e. confusion energy most probably close to 0 GeV) 
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Results: Linearity

What we learn:

● Asymmetric green region and difference between MPV/Mean in subplot:
distributions show skewness → there exists a bias  in reconstruction. 
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What is shown:

Plot:  distributions of neutral confusion energy from each network. 
Spread measured with RMS90  and median absolute deviation (MAD)
● neural network, no timing information applied  (green);
● neural network, with timing information applied (red).

Reconstructed    -   True

Results: Confusion Energy Distributions
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What we learn:
● No improvement using timing information in PointNet.
● DGCNN and GravNet show  significant improvement using timing information;

→ 21% reduction in MAD using time with GravNet 
● → 35% reduction in MAD using time with DGCNN

● Quote from DGCNN Paper: ”Instead of working on individual 
points like PointNet, we exploit local geometric structures…’” 

● Tentative hypothesis: 
timing information provides a richer description of ‘local energy 
density’ (subshowers, decays, etc.) 

Results: Confusion Energy Distributions
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grayx

What is shown:

Left, Middle: 
Matrices of the fraction of events of the sample 
reconstructed within the resolution of the AHCAL. 

Resolution of AHCAL  In 
Simulation: 

R = 49%/√E  7%⊕

Right: 
Additional events reconstructed with than without 
time.

Red means more events are reconstructed with 
time than without it.

Results: Clustering Performance
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What we learn:
● Clustering performance  depends on particle energy combination.

● Result indicates use of track to cluster charged particle → see next slide.

≠
+10-15% 

more events
 reconstructed

within resolution

Worst case scenario: 
charged  > neutral

Performance 
rapidly degrades

● Timing information helps significantly with the 
most challenging case of charged > neutral 
shower energy.

Results: Clustering Performance
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AI: 
“Excellent! I can cluster 
around two axes, one of 

which is definitely my 
charged shower.”

AI: 
“Darn! The track information 

is close to the centre of 
gravity! That only gives me 

one axis for clustering!

 Now I have to figure out 
where the neural shower is... “

Results: Clustering Performance
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What is shown:

● Skewness of the confusion energy distributions as a 
function of particle energy;

● Skewness is the third statistical moment, and describes 
“asymmetry of the distribution about it’s mean”

● Blue means left-tailed distribution → 
neutral shower energy underestimated

● Red means right-tailed distribution→ 
neutral shower energy overestimated

Results: Reconstruction Bias

Reconstructed    -   True

Neutral shower energy 
underestimated

Neutral shower energy 
overestimated

What we learn:
All studied networks more frequently donate energy
 from the shower with more energy to the one with less;
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● Note, from [1], on Pandora PFA:
”...by design the initial clustering 
stage errs on the side of splitting 
up true clusters rather than 
merging energy deposits”;

● Very good agreement between 
network and in Pandora PFA 
using AHCAL [5];

● Suggests networks have learned 
similar strategy as state-of-the-art 
method;

  

[5] Daniel Heuchel. ‘Particle Flow Studies with Highly Granular Calorimeter Data’. Place: Heidelberg. Dissertation. 2022. doi: 10.11588/heidok.00031794. 

10 GeV Neutral, 30 GeV Charged
Pandora PFA [5] 

Overestimation

Reconstructed    -   True

Results: Reconstruction Bias
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Results: Software Compensation

What we learn:

● ML software compensation can be applied after shower separation in the majority of cases. 
● Confusion plays a role in the linearity of response. 
● Confusion cannot be neglected from the training of SC algorithms → solution is to train the models together.

Bias in reconstruction

Much less bias in 
reconstruction
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Results: Resolution

What we learn:

● ML software compensation can be applied after shower separation in the majority of cases. 
● Confusion plays a role in the linearity of response. 
● Confusion cannot be neglected from the training of SC algorithms → solution is to train the models together.

Bias in reconstruction
Much less bias in 

reconstruction
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Conclusion

● Shower separation is critical  to the performance of Particle Flow Calorimetery;

● Several neural network models were implemented for shower separation in AHCAL, exploiting track and timing information 

● The following observations are made:
– graph neural networks produce superior results to point-based model;
– strong evidence for use of topological track clustering learned by models;
– where neutral > charged particle energy:

•  more than 90% of events reconstructed within AHCAL resolution, with or without timing information;
–  where charged > neutral particle energy: 

• +10-15% more events are reconstructed  within AHCAL resolution,  if 100 ps timing resolution is available;
– all neural networks prefer to separate clusters of energy than merge them, similarly to Pandora PFA.

● MAIN RESULTS: 
– A strong case exists for the AHCAL temporal calorimeter→ improvement for  charged > neutral particle energy; 
– Neural networks learn similar clustering strategies to Pandora PFA. 
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What constitutes an ‘event’ for AHCAL?”

Z Axis:

● Layers of absorber, 
active material and 
sensors (cells);

● 38 active layers.

X-Y Axes:

● Matrices of sensors (cells);

● 24 x 24 cells per layer

Color Axis:

● Energy of cell, in muon-calibrated ‘minimum 
ionising particle’ (MIP) units;

● 22,000 cells altogether;

● Sum of all the cell energies →  reconstructed 
energy of hadron;

Additionally:

● Timing information for each cell in nanoseconds; 

● Not shown in this event display. 



22/22/20Shower Separation for Highly Granular Calorimeters Using Machine Learning 

PointNet Model
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DGCNN Model
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GravNet Model
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Synthetic Shower Overlay Algorithm
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Synthetic Neutral Showers

Charged particles ionise dense matter. Neutral particles do not.  

No difference is expected between hadron showers caused by 
neutral and charged hadrons after first hard interaction.

● Synthetic neutral showers can be produced by removing energy 
deposits from ionisation; 

● Achieved using a topological cut on the event.

● Active cells less than 60 mm from shower ‘centre-of-gravity’ 
(energy-weighted  mean)

● Active cells observed less than one layer before the shower 
starting layer; 

● Active cells with less than 3 calibrated MIP energy units;

● Preliminary studies using event classifier indicate this method is 
highly effective at producing synthetic neutral showers at the 
event level. 
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Training Shower Distance Procedure

Step 1:

● Calculate differential energy deposited per unit 
area in a circle of radius Rhit around the centre-
of-gravity;

● Fit the distribution with a cubic spline.
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Training Shower Distance Procedure

Step 2:

● Calculate cumulative energy distribution;

● Currve saturates at the average energy 
measured by AHCAL for a particular shower 
energy; 
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Step 3:

● Distribution is inverted, and evaluated as a 
function of particle energy

● Curve follows logarithmic relationship:

● Apply factor to determine correct radius of circle 
in which to displace events such that 80% of 
energy is integrated.

● For any particular combination of energies, the 
average shower distance is approximately 20 cm
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