(Marlin)Kinfit: Kinematic Fitting for the ILC

Benno List, Jenny List

ILD Detector Optimization WG Phone Meeting
20.2.2008

* Introduction: Kinematic fitting and the method of Lagrange multipliers
 The OPALFitter
* NewtonFitter: A new fitting engine

e Toy Monte Carlo Studies

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 1

Introduction

 Kinematic fitting: minimize a x2 under constraints
=> method of Lagrange multipliers (MINUIT not applicable)

Our work:

» Develop an object oriented software framework for kinematic fits:
Fitter engine - Constraints - Fit objects

* Develop a new fitter engine: NewtonFitter
=> Solves kinematic fit problems with

- Unmeasured quantities (Neutr(al)ino)

- Hard constraints (2p, = 0)

— Additional “soft” constraints, i.e. additional x2 terms: x2 = (m-mg)/c?
=> needed if natural width of particles starts to be resolved by detector

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 2

The Method of Lagrange Multipliers

N measured parameters 7 Measured values i, covariance matrix V'

J unmeasured quantities £

—
—

K constraint funtions f(n: £) The usual X2 The constraints

The total y2-: o (76N =@ - 7T -V (7 - AT - 7 (7€),

For minimum: Seek values where all derivatives vanish:

\Fﬁ,x% = 2l (g—m+ Qﬁir A =0, (N equations)
Vexsd = Fg A=0, (J equations)
Va2 = 2f(7,€) =0, (K equations)
I fr . A fr .

Foen = K »x Nmatrix Fe)pi = =— (J x Nmatrix
{ 7?)-;”1 a”ﬂ {) { -f)'E\J agj {)
Solve this nonlinear set of equations:

5 y—1 = T

0 =1 (7—y)+F, -A

0 = FT.X

0 = f(i.é

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 3

The OPAL Fitter Method

Of

[j = 1";;'—1 . {ﬁ_ m — fg . 5: (F??}ﬁﬂ = (5‘}.? (I{ et E\rmﬂtl‘b{}
The equations to solve: [0 = £ -X ;

= = 2 (Fe)ii = OJk (J % Nmatrix)

0 = f(7.¢) O ag

For iterative solution: Taylor-expansion of the constraints:
Frh e) = £ &) + By - (0 =) + FE - (87 = &),
For each iteration, solve this linear system
— yv-L. (ﬁy—l—l _ g} 4+ {Féz}T) Xu—l—l}
- (TR
= PR @)R @)

ol Ol Ol

In matrix form:

-1, ?;,.‘ 171 0 {Fr;;x)T _].,?v+1
) 0 =l o o FE)) &
f!f + F:?fﬁp + Fg . (Ev F;r; Fé,ﬂ 0)ky'_l

See L. Lyons: Statistics for nuclear and particle physics, Cambridge Univ. Press 1986.
B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 4

How the OPALFitter works

=TI =TR =TI
|-
™ =
~ g
1 =

A
b

Solution
Starting poi

Constrait

7 contours
X2 contours Ny

>

B. List 20.2.2008

(- g+ FT 3 4 The constraint line must be pqrallel
to the ¥2 contours at the solution

— The solution must lie on the
0-contour of the constraint

The OPALPFitter approximates
A the constraint by a tangential plane

,,,,

1,
llllll
L/

One OPALFitter
iteration step

(Marlin)Kinfit: Kinematic Fitting for the ILC Page 5

The Software

Three basic concepts:

* The Fitter Engine:

- Sets up the system of equations and solves it
— Administrates lists of constraints and fit objects

 The Constraint:

— Takes 4-vectors of fit objects to calculate its own value

- Can calculate its own derivatives w.r.t. the 4-vector components of the fit
objects

* The Fit Object:

- Encapsulates all details of the parametrization (number of parameters,
parametrization)

- Can calculate its own contribution to the global x2 and its derivatives

— Can calculate the derivatives of 4-vector components w.r.t. all parameters

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 6

What Do We Need?

» Parameters (measured and unmeasured),
measured values and covariances
=> stored locally in FitObjects

* (inverse) global covariance matrix: can be built from local
covariance matrices (stored in FitObjects)

e \Values of constraint functions
=> ConstraintObjects

» Constraints typically expressed in terms of 4-vector-components
=> get them from FitObjects

 Derivatives of constraints w.r.t. all parameters:
Use chain-rule:

- Constraint provides derivatives w.r.t. 4-vector components

- FitObject provides derivatives of 4-vector components w.r.t. parameters

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 7

Sketch of the Fit Procedure

 Fitter has a list of FitObjects;
each FitObject knows its own nuber of parameters and whether they are
measured
=> Fitter assigns global parameter numbers to all parameters of FitObjects

* Fitter has a list of ConstraintObjects —
=> assigns global numbers to them From FitObjects

4 ~

v-L.

y V-1 o {Ff;)r vl
- resets vector and matrix to 0 (} = (0 0 l(F)”) _ (g+t)
—f + Fyii + Y - & By IO f A

— asks FitObjects to add their parts \ f

 Fitter builds up system of equations:

N ~

=

— asks ConstraintObjects to add their parts

From ConstraintObjects

* Fitter solves system of equations and
updates parameters of FitObjects

 Fitter checks for convergence (Parameter changes small, constraints fulfilled),
iterates if necessary

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 8

The User Code

: .] E theta phi dE dt heta dphi
Create FitObjects , JetFitChject jetl (44., 1.2, 0.087, 5.0, 0.2, 0.1
(2 jets) JetFitObject jet2 (46., 1.8, 3.120, 5.0, 0.2, 0.1
/[l Constraint O*sum(E) + 1*sum(px) + O*sunm(py) + O*sum(pz) =0
] Monent unConst rai nt pxconstraint (0, 1, 0, 0, 0);
Create Constraints: pxconstrai nt . addToFOLi st (jet1):
pr = 0, pxconstraint.addToFOLi st (]et2);
Zpy= 0, [l Constraint O*sum(E) + O*sunm(px) + 1*sun(py) + O*sum(pz) =0
Invariant mass = 90GeV Monment unConstrai nt pyconstraint (0, 0, 1, 0, 0);

pyconstraint.addToFOLi st (jetl);
pyconstraint.addToFOLi st (jet2);

_ _ // Constraint total mass = 90
Tell constraints over which MassConstrai nt ntonstraint (90);

. . nconstrai nt. addToFOLi st (jetl);
FitObjects they should sum ——p Nronstraint.addToFOLi st (jet2);

Create the Fitter Engine =———p OPALFitter fitter;

. . . fitter.addFitQbject (jetl);
Tell the Fitter which Objects /'fi tter.addFitQbject (jet2):
are to be fitted,

and which Constraints are = fitter.addConstraint (pxconstraint);

—> fitter.addConstrai nt (pyconstraint);
to be observed T~ fitter.addConstrai nt (ntonstraint);

Perform the Fit = fitter.initialize();
== doubl e prob = fitter.fit();

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 9

Advantages of the Software

* Fitter Engine decoupled from the rest
=> can try different algorithms
(2 are implemented: OPALFitter and NewtonFitter)

e Constraints are decoupled from inner workings of FitObjects

 FitObject parametrization encapsulated:
New Objects with different parametrization can be added easily

* Scheme can be extended for other problems: decay chains
(constraints on 4-momenta and vertex positions)

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 10

A New Fitter Engine: NewtonFitter

 OPALFitter: Reference implementation,
literal translation of FORTRAN code used in OPAL (WWFIT)

* Shortcomings of OPALFitter:

- Does not use 2™ derivatives of constraints => could improve convergence

- Difficult to extend to “soft constraints” (additional x2 terms)

* New approach: NewtonFitter

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 11

The Mathematics of the NewtonFitter

N parameters a;, i = 1...N Measured values i, covarianve matrix V'

I constraint funtions [(@)

The total x Y7 (@.A) = x* (@.7) + A" - f(@).

Seek stationary point, where all derivatives vanish:

VX% = V_’.a_){? -|—_)FT + VG_.F[&.’] — 0. (N equations) 0\ %211 B 53%2 + 3 A sj%
Vs = fla)=0, (IC equations) 0) \ &z | f

Newton-Raphson iterative method to solve y(x)=0:

vy (xY) Y v vl v
= Wk |\ — n — T
AT y (x¥) - (a e’ =y (2¥)

Here: Solve this system of equations in each step:

,},u—|—1 — 1 => solve

2 2 2 2 2 2 -
O L9 = 97 0f 9K ’ o1 ax> T
(Baroar Tk Farons aoan TN Faroew | 3 0 T \ aj —af™" (oo T Ak g \
% 02 i 5252 82 fr. 8 O fre v il B2 N
dapgiaq +)‘k " Bapgbaj dapdang +)‘k T Ban dang Sapg Japg . N -‘.'!-I T — B ang +Ak T Bang
ki o7 Y\
ch'lﬂj_ e aQN 0 e D 1 1 f].
- - - . I.J e IJ+1 e
9fk Ofk AK — A \
\ Haq Hapg 0 0 } f}:{ /

B. List 20.2.2008

(Marlin)Kinfit: Kinematic Fitting for the ILC

Page 12

Application of the Chain Rule

U 52fk dRr de_{_ y@fk df)l?
“OP,0Py Oa; da; " “OPs daida;

Measured
parameters only

2 2 2
-t R W)
Haq dap daqday

R W ol 22
Hapdaq k Hapydaq

GE]

Haq

We need only:
*Derivatives of 4-vectors w.r.t. parameters
*Dertivatives of constraints w.r.t. 4-vectors

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 13

OPALFitter vs. NewtonFitter

OPALFitter:
Approximates constraint
by tangential plane

iteration step

One OPALFitter

>

NewtonFitter:
Approximates constraint
by tangential paraboloid

One NewtonFitter
iteration step

>

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 14

Toy Monte Carlo Studies

e et e ->ttbar, t->bW, W->j:
6 jets in final state, Vs=500GeV,
no beamstrahlung, isotropic decays

* Mass of t and W: Nonrelativistic Breit-Wigner
« Smear jets with 8E/E = 35%/VE, 56=0.1rad, 8¢=0.1rad
» Parametrize jets with E, 6, ¢, treat them as massless

* Fit event (perfect jet-pairing) with 7 constraints:
-3p,=0,2p, =0, 2p, =0, ZE = 500GeV
- m(W,) = 80.4GeV, m(W,) = 80.4GeV
- m(t,) = m(t,)

18 measured values, 7 constraints => 7dof

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 15

Toy MC: e+e- -> ttbar -> 6 jets

OPALFitter: 1.1% failed fits NewtonFitter: 0.9% failed fits

= Entries 98 F Entries 989 1000 Entries 39 40 ¢ Entrics 991l
600 - Mean 3.691 Mean 0.4922 C | Mean 3.102 Mean 0.4916
E RMS 0.5464 30 RMS 0.2886 750 RMS 0.5545 30 RMS 0.2888
400 — . = S —=
§ <Nit>=3.7 20 | 500 <Nit>=3.1 20 |
200 g - B
- 10— 250 10 |-
O \1\‘\\\\‘\\ 0:\\\‘\\\‘\\\‘\\\‘\\\ 07 —‘l“““\‘\\ 0:\\\‘\\\‘\\\‘\\\‘\\\
0 10 20 0 02 04 06 08 1 0 10 20 0 02 04 06 08 1
Iterations Fit Probability Iterations Fit Probability
r Entries 1974 Entries 1978 F Entries 19813 Entries 1982
100 — Mean 173.7 B Mean 173.9 100 Mean 173.7 - Mean 173.9
r RMS ”. 9.050 150 — RMS ﬁ 4.921 E RMS rL 9.047 150 |— RMS ﬁ 4.919
75 = - 75 = =
g 0=91 0 L 0=4.9 s 0=9.0 100 0=4.9
50 — | 50 L)
25 50 |~ 5 50 —
0 E T I 0 L1l &= I Ll 0 C [R B L Lo Ll
140 160 180 200 140 160 180 200 140 160 180 200 140 160 180 200
Top Mass (measured) / GeV Top Mass (fitted) / GeV Top Mass (measured) / GeV Top Mass (fitted) / GeV
Entries 1978 3 C Entries 1978 Entries 1982 3 - Entries 1982
r Mean 79.88 L Mean 80.40 - Mean 79.87 L Mean 80.40
100 RMS JJJ-lIJ1 7.452 10 g RMS 0.1128E-04 100 RMS JJJ-l]_n 7.456 10 E RMS 0.2380E-05
I 1025 I o=7.5 10’
— = =\ s
0o=7.5 c E
0 AR B ! L nin_| 0 AR A ! I | I
60 80 100 80.39980.3995 80.4 80.4005 60 80 100 80.3980.3995 80.4 80.4005
W Mass (measured) / GeV W Mass (fitted) / GeV W Mass (measured) / GeV W Mass (fitted) / GeV

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 16

Semileptonic ttbar events

- Now generate e* " -> t tbar, t->bW, W ->jj, W ->ev
4 jets + electron + neutrino in final state

« Smear electron with 8E/E = 10%/E, 56=0.1rad, d¢=0.1rad

» Starting momentum of neutrino:
given from px, py, pz of the event

 All constraints as in previous example

* 15 measured values, 3 unmeasured, 7 constraints -> 4dof

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 17

Toy MC: e+e-->ttbar->4 jetse v

OPALFitter: 0.7% failed fits NewtonFitter: 2.7% failed fits

C Entries 993 Entries 993 C Entries 973 = Entries 973
C Mean 5.155 30 e 0. 4917 E Mean 3.921 Mean 0.4874
400 = RMS 3.577 024} 5 400 RMS 1.568 30 RMS 0.2897
300 - e 300 — e
- || <Nit>=5.1 20 ¢ WMH - || <Nit>=3.9 20 |
200 — B 200 | -
= 10 = -
100 B 100 10 :
0 | _I_H—\L\\ 07\\\‘\\\‘\\\‘\\\‘\\\ 0 [‘\\\‘\‘ 07\\\‘\\\‘\\\‘\\\‘\\\
0 10 20 0 02 04 06 08 1 0 10 20 0 02 04 06 08 1
Iterations Fit Probability Iterations Fit Probability
F Entries 1986 r Entnes 1984 80 L Entries 1944 | Entries 1944
80 - Mean 175.6 150 Mean 1742 C Mean ” 175.6 150 Mean IJ] 174.3
- RMS|| "ul-luﬂ _ 12.65 RMS 5.846 60 C RMSq |_[n 12.60 | RMS 5.892
60 — B c =19 -
2 “]]r 0=12.7 100 |- o= 5 \[“ 0=12.6 1o 0=5.9
40 [| 40 — L
20 © 50— 20 - 0
O : 1 ‘ L | ‘ L ‘ | O | L ‘ | | ‘ | 0 [L1 ‘ L | ‘ L1 1 ‘ | 0 Lol | L1 1 ‘ | | ‘ |
140 160 180 200 140 180 140 160 180 200 140 160 180 200
Top Mass (measured) / GeV Top Mass (fitted) / GeV Top Mass (measured) / GeV Top Mass (fitted) / GeV
100 = Entries 1946 C Entries 1944
100 — Entries 1986 3F Entries 1986 L Me: 80.58 30 Me:z 80.40
= Mean 80.63 10 ° =— Mean 80.40 ull ean : 10 " = ean :
= RMS JJ]] 10.74 g RMS 0.1230E-03 80 RMS 07 & RMS 0.2814E-03
5o . - =10.7 20
. = 107 60 1020
F 0—1 O . 7 = r E
S0 = B 40 [-
F 10 = - 10 £
25 |- B 20 E
0 . L RS kel Iy 0 . 6‘0 o 8‘0 - ‘1(‘)0‘ ;0 3980 3‘995 80‘-'4 80 1005
60 80 100 80.3980.3995 80.4 80.4005 ’) ’)
W Mass (measured) / GeV W Mass (fitted) / GeV W Mass (measured) / GeV W Mass (fitted) / GeV

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 18

Convergence

* NewtonFitter is not yet optimized for best convergence

* NewtonFitter generally needs less steps, but each step is more
expensive. Overall NewtonFitter is ~2 times faster (may vary with
the problem)

» Convergence criteria (so far) for NewtonFitter:

- No parameter is changed by more than 1% of its sigma

— All constraints are fulfilled within 1% of their resolution
(resolution determined by error propagation from parameter errors)

* Problems with all iterative approaches:

- Need a good start value

- One iteration may send parameters far off
=> in NewtonFitter: scale step size such that no parameter is changed by
more than 4sigma in a single step (can be optimized)

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 19

Soft Constraints

* Problem:
Constraints may not be fulfilled exactly by physical situation

 Examples:

- Mass of a W/Z has Breit-Wigner-shape,
deviation may be bigger than detector resolution

- Beamstrahlung leads to nonzero pz and reduction of Vs

- Proton remnant may carry nonzero px, py
* Possible solution:

- Instead of imposing f(a)) = 0 (hard constraint), add term to x:
X% = (f(a) / o)
— Other penalty functions could be more appropriate (beamstrahlung!)

» Should improve fit probability distribution

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 20

Soft Constraints, Technicalities

« OPALFitter:

— Distinguishes between measured and unmeasured quantities

— assumes that 62x%/0¢, 8§j = 0 for unmeasured quantities

- => Additional x? terms that involve unmeasured quantities are not possible
* NewtonFitter:

— Does not distinguish between measured and unmeasured quantities
- Has already framework to add 2™ derivatives of constraint functions

- => Soft constraints are easily added in NewtonFitter

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 21

Toy MC Study:

» Use ttbar -> 4j e v Monte Carlo as before

* Replace hard mass constraints by soft ones:
- X2 += (m(W,) -m,)?/o? with m;=80.4GeV, o0 = 2.1GeV =T,
- X2 += (m(t,) -m(t,))?/o? with o = V2 1.4GeV = 2T,

* Remark:
A Breit-Wigner is much broader than a Gaussian;
for a correct fit probability distribution, one needs a different penalty

function. However, experience shows that this makes the constraint
effectively useless.

(Remark 2: The correct penalty function is not simply -2In(L))

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 22

Toy MC: e+e- -> ttbar -> 4 jets e v, soft c.

» Soft constraints are more difficult failed fits: 8.8%
to handle for the fitter: R e T
: 100 -
- More iterations needed ;5) 11 <Nit>=15.2
E 50
- Rate of failed fits higher than for hard A o S A
Constraints 0 0 25 50 75 100 0 0 02 04 06 08 1
Iterations Fit Probability
- Fit probability has peak at low values wETE B e
_ . 60 ; RMS '-.In 12.50 B RMS 7.536
« => Needs more tuning ok " o=125 '© | =75
. . C 50 —
* 2 possible strategies for better 0
C()nvergence: 140 ‘16‘0‘ | ‘12‘30‘ | ‘2(‘)0‘ “140 160 ‘12‘30‘ " 200
Top Mass (measured) / GeV Top Mass (fitted) / GeV
- Start with large sigma values, then 100 s T g3 e T3
decrease (sort of simulated annealing) 0 - lma gl e e 1o
. . 60 0=10.7 3 =23
- Start with hard constraints, then relax 0 - 0 g
20 E
* BUt it Works 0 7‘60‘ | ‘8‘0‘ | ‘1(‘)0‘ 1 60 ‘8‘0‘ | 100
W Mass (measured) / GeV W Mass (fitted) / GeV

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 23

Availability

* The Kinfit code has been provided in Marlin by Jenny:
MarlinKinfit => check it out
(See also Jenny's talk in Zeuthen:
http://ilcagenda.linearcollider.org/contributionDisplay.py?contribld=52&sessionld=4&confld=2389)

* Development is still ongoing, so use the cvs HEAD version if
possible

* An example processor to fit WW events has been written by Jenny
and is included in MarlinKinfit

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 24

Result from Marlin Processor (Jenny List)

m
m

[M_W in GeV, all pairings, before fit] Mean 6637 [M_W in GeV, best pairing, before fit | 74.75

e 200 full WW events T s

+ LDCOO0Sc, 4T, Mokka 5.4

» Track cheater, 5 j
TraCkWiSGPartiCleFlOW (O. Wendt) °oz"'2|d'lt'n":aln"'a'ci'1'66'1'2'6'1'4'10'1'6'6'1'36'2au g 'L 80 u' 1 148160180 200

[M_W in GeV, all pairings, after fit | a4.24 [M_W in GeV, best pairing, after fit | 188
* Energy scale not tuned aof W
Bﬂ;— * Nosm. Gauss 411.2 £43.4 60 Morm. Gauss 372.14 27.5
. . ‘m;— :I::':n Emﬁ";: 50 Mean 78.07 L 075
* Just a proof of principle “ i) I

m%- 130

30f-
20f ®
10 { 10
E|m||‘I|||'||||||||||||mrrl|||| ll !
30 40 60 B0 100 120 140 160 180 200

60 80 10

it prof y, all pairings it prof y, best pairing
Fit bability, all pairi Fit bability, best pairi

FTETENTETE Il PR TR P P PP FRTE i P AT AT _|||I||||I|| T FETRE FE YA FETE ENE N1 A P I ETR T FT e
0 0102 03 04 05 06 0.7 0.8 09 0 0102 03 04 05 06 0.7 0.8 0.9

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fiuung 1or we 1 rage 29

Available Classes

* Fit engines implemented so far:
- OPALFitter:

- NewtonFitter
 FitObjects implemented so far:

- JetFitObject: Jet with E, 6, ¢ parametrization, mass can be set

- NeutrinoFitObject: Neutrino with E, 8, ¢ parametrization
e Hard constraints implemented so far:
- MomentumConstraint: a-2E + b-2p, + c-Zpy +d2p,-e=0
- MassConstraint: m(object list 1) - m(object list 2) - m; =0
» Soft constraints implemented so far:
- SoftGaussMomentumConstraint: (a-2E + b-Zp, + cZp, +d-Zp, -e)?/0? = ¥?

- MassConstraint: (m(object list 1) - m(object list 2) - mo)2/02 = x?

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 26

Summary and Conclusions

« Kinfit provides a flexible framework for kinematic fitting:
Fit engine, constraints and fitted objects are separated and can be
combined in a flexible way

* A new fit engine NewtonFitter is provided in addition to the well-
tested OPALFitter

 NewtonFitter can handle soft constraints that involve unmeasured
quantities

» Some (example) FitObject classes have been implemented,
plus hard and soft momentum and mass constraints

 Work continues

* Your feedback is welcome!

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 27

