

ILC Crab Cavity (ILC-CC) System Overview

Peter McIntosh

(on behalf of the ILC Crab System Design Team)

LCWS08, UIC, Chicago 16th - 20th November 2008

- ILC-CC Collaboration Team
- Crab System Specifications
- Key Technical Design Challenges:
 - Cavity Wakefields
 - Coupler Developments
 - LLRF and Synchronisation
- Integrated System Tests
- CLIC-CC Specifications
- Summary

ILC-CC Collaboration Team

Cockcroft Institute:

İİĹ

- Graeme Burt (Lancaster University)
- Richard Carter (Lancaster University)
- Amos Dexter (Lancaster University)
- Philippe Goudket (ASTeC)
- Roger Jones (Manchester University)
- Alex Kalinin (ASTeC)
- Lili Ma (ASTeC)
- Peter McIntosh (ASTeC)
- Imran Tahir (Lancaster University)

- FNAL:
 - Leo Bellantoni
 - Mike Church
 - Tim Koeth
 - Timergali Khabiboulline
 - Sergei Nagaitsev
 - Nikolay Solyak
- SLAC:
 - Chris Adolphson
 - Kwok Ko
 - Zenghai Li
 - Cho Ng
 - Andrei Seryi
 - Liling Xiao

ASTeC

ILC-CC System Specification

Crossing angle	14 mrad
Number of cryovessels per IP	2
Number of 9-cell cavities per cryovessel	2
Required bunch rotation, mrad	7
Location of crab cavities from the corresponding IP, m	13.4 – 17.4
Longitudinal space allocated per cryovessel, m	3.8
RMS Relative Phase Stability, deg	0.095
RMS Beam Energy Jitter, %	0.33
X offset at IP due to crab cavity angle (R12), m/rad	16.3
Y offset at IP due to crab cavity angle (R12), m/rad	2.4
Amplitude at 1TeV CM, MV	2.64
Max amplitude with operational margin, MV	4.1

- TM₁₁₀ mode dipole cavity.
- e⁺ and e⁻ beams receive transverse momentum kick:
 - Each bunch rotated to maximise Luminosity at the IP.
- Crab cavities positioned close to IP @ ~ 15 m.
- Not using the crab cavities loses about 80% of the luminosity.

Crab Cavity Integration on ILC

- Crab cavity just behind the Final Doublet
- FD aperture r~1cm => constraint on crab aperture and coupler penetration (to not limit collimation depth)
- Limit for couplers outputs oriented toward outgoing beampipe
- Outgoing beam (~17MW, highly disrupted) goes through crab

cryostat

The Cockcroft Institute

Key Technical Challenges

Crab Cavity: Wakefield suppression Deflecting gradient Damping and Couplers: Input (based on DESY/FNAL 3rd harmonic), - LOM (multipacting, tuneability, fabrication), - SOM (very high damping required, tuneability), - HOM (multipacting, tuneability, fabrication). LLRF and Synchronisation: LLRF phase/amplitude-lock performance (single cavity), - Synchronisation stability (dual cavity), Microphonics rejection capability. Cryomodule: - Field polarisation (±1 mrad), - Microphonics rejection (cryogenic distribution), Cavity alignment (5 nm sigma vertical beam size at IP), - ILC installation constraints (extraction beamline ~18 cm away).

ilr

İİL

Accelerator Science and Technology Centre

ASTeC

- A 9-cell SRF cavity design developed to achieve ILC specs.
- 35 µm vertical offset at cavity with nominal ILC parameters.

• The PLACET results show when the damping specifications are met the maximum vertical offset is 1.5 nm.

• Gives good agreement with analytical results, and shows little emittance growth.

- The proposed 9-cell crab cavity has been simulated using MAFIA, MWS and Omega 3P:
 - All modes to 18 GHz identified,
 - R/Qs calculated,
 - Mode damping requirements determined from analytical and PLACET wakefield analysis.
- All calculated cavity parameters have been confirmed up to 15 GHz with a cold testing program of bead pull and stretched wire measurements.

Accelerator Science and Technology Centre

ASTeC

Structure Characterisation

- Model fabricated at DL and used to evaluate:
 - Mode frequencies
 - Cavity coupling

ilr iic

> HOM, LOM and SOM Qe and R/Q

- Modular design allows evaluation of:
 - Up to 13 cells.
 - Including all mode couplers.

Stretched Wire Characterisation

- Provides for characterisation of mode:
 - Frequencies
 - Kick factors
 - Loss factors
 - **R/Q**

İİİ.

- Principle based on similarity of e-m fields in the presence of beam and thin wire.
- Frequency domain signal launched down wire, which then probes the wakefields within the device under test.
- Launch cones optimised for minimal reflections (VSWR < 1.3 up to 15 GHz).

Stretched Wire Characterisation

Mode Measurements

Prototype LOM Qe Measurements

The LOM coupler was found to give good agreement with both MWS and Omega3P simulations.

1.00E+07

1.00E+06

- Bunch-RF phase error in a crab cavity causes unwanted centre-of-mass kick.
- Providing both crab cavities are phase balanced, can compensate these COM kicks.
- ILC crab cavity zero crossings need synchronisation to 94 fs for the 2 % luminosity loss budget.
- Main linac timing requirement is nominally 0.1° at 1.3 GHz or ~ 200 fs and hence cannot be relied upon directly to provide timing signals for the crab cavities:

 $- \Rightarrow$ ~30% luminosity loss.

ILC-CC System Verification

- The phase of the field in each cavity is sampled, compared to the timing reference and the error sent to a digital signal processor (DSP) to determine how the input signal must be varied to eliminate the error.
- Provide an RF interferometer between each crab cavity so that the same cavity clock signal is available at both systems.
- 16-bit DAC/ADC architecture (high resolution)

LLRF/Synchronisation Scheme (Final)

LLRF/Synchronisation Scheme (Preliminary)

RF Interferometer Controls

ILC-CC System Validation Tests

 Aim: to verify LLRF control and synchronisation of 2 x 3.9 GHz SRF crab cavities.

Cavities limited in gradient to 1 MV/m (~40kV/cell) – shielding implications.

Accelerator Science and Technology Centre

ASTeC .

Cavity Tuning Issues

Cavity S/N 001

Q _L	=	0.97e7	
Q _e (input)	=	1.44e7	
Q _e (output)	=	3.0e9	
Q _o	=	3.0e7	
Bandwidth	=	400 Hz	
Drift	~	300 Hz	
Fixed Tuner			

Cavity S/N 003

Accelerator Science and Technology Centre

ASTeC

Preliminary Measurement Results

- Independent phase lock achieved for both cavities:
 - Unlocked \Rightarrow 10° r.m.s.
 - Locked \Rightarrow 0.135° r.m.s.
- Performance limited by:
 - Source noise (dominant)
 - ADC noise

İİL

- Measurement noise
- Cavity frequency drift
- Microphonics
- Improvements being made.
- Next tests scheduled for December 08.

DSP Clock Speed of 50 MHz

System Microphonics Perfomance

- December Tests:
 - Improve cavity tuning to ensure sustained lock:
 - Increase cavity BW to ~1kHz ($Q_L \sim 4e6$)
 - Control cavity frequency to within ± 100 Hz, to allow use of precision drive oscillator.
 - Quantify interferometer performance.
- Longer Term:
 - Implement FPGA control for fast interferometer feedback.
 - Implement amplitude feedback electronics.
 - Implement dynamic phase and amplitude calibration.
 - Develop ILC-CC cryomodule design:
 - needs more resources.
 - Build full cryomodule and validate with beam on ILCTA:
 - needs lots more resources!

ilr

İİL

ASTeC.

- A full set of couplers were designed, built, tested and checked for Multipactor.
- Measurements found problems with the SLAC HOM coupler above the 2nd dipole passband.
- CI Simulations found that the HOM coupler could not be modified to fix the problems without a significant redesign.
- CI staff are finishing a new HOM coupler design which addresses these problems.
- CI LOM/SOM coupler has been designed.

Combined SOM/LOM Coupler

Accelerator Science and Technology Centre

2nd HOM Coupler

- The 2nd HOM coupler is currently still being optimised by CI.
- Design based on novel analytical techniques for studying high frequency behaviour of HOM couplers.
- Results will be submitted to PRST-AB.
- After the publication, the dimensions can be passed to SLAC for simulation of the final ILC Crab Cavity couplers.

VORPAL Simulations

- CI is setting up use of some HPC facilities within the UK for RF simulations.
- VORPAL is installed on at least one cluster.
- CI can now simulate a full ILC crab structure.
- This allows us to verify the Omega3P simulations.

- Proposed CLIC-CC structure:
 - 12 GHz NC TW cavity \Rightarrow V_⊥ ~ 2.4 MV for 20 mrad IP crossing angle
- ILC-CC phase tolerance @ 3.9 GHz:
 - 0.095° or 67 fs
- CLIC-CC phase tolerance @ 12 GHz:
 0.025° or ~6 fs! (10 x tighter)
- Optical interferometer required with ~ 1 fs resolution.
- Much more stringent management of system phase noise sources.
- Much of the ILC-CC design methodologies can be directly applied to CLIC-CC.
- FP7 EUCARD funding available for CLIC-CC R&D (CI and CERN) from 2009.

;lr

İİL

Accelerator Science and Technology Centre

ASTeC

- Cavity design developed that meets ILC wakefield thresholds:
 - Simulations verified with cavity model.
- Mode coupler designs maintain cavity wakefield compliance:
 - Prototype couplers verified with cavity model.
- LLRF and synchronisation architecture developed to reach ILC phase and amplitude tolerances:
 - Initial tests have demonstrated ability to lock 2 SRF cavities, close to ILC specs ⇒ very promising!
 - An RF interferometer (utilising digital phase detectors) looks to be able to achieve ILC-CC stability requirements.
 - Dominant sources of phase noise identified.
 - LLRF has demonstrated microphonics suppression.
- Further tests planned for next month.
- Starting to develop ideas for CLIC-CC system solutions.

Accelerator Science and Technology Centre

ASTeC