

Devt of CMOS Sensors for an ILC Vertex Detector:

Progress since Summer '07 — Plans for 2008

Marc Winter (IPHC-Strasbourg)

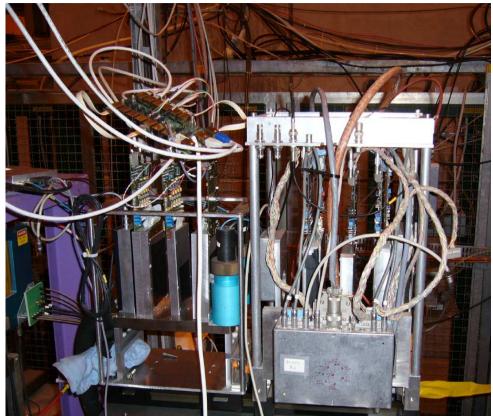
contributions from DAPNIA-Saclay, LPSC-Grenoble

▷ More info. on IPHC Web site : http://wwwires.in2p3.fr/ires/web2/rubrique.php3?id_rubrique=63

OUTLINE

- Tests of sets of sensors in real experimental conditions :
 - * Beam telescopes : EUDET (European project), TAPI
 - ***** STAR HFT telescope
- Fast sensors with digitised outputs :
 - * Fast column // architecture with integrated discriminators : beam tests, new chips
 - * Zero-suppression micro-circuit : lab tests
- Summary & Plans for 2008

Commissionning and Use of a MIMOSA Telescope

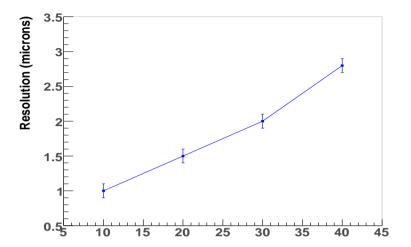

New beam telescope operated at DESY and CERN-SPS:

- ▶ T.A.P.I. = TELESCOPE A PIXELS DE L'IPHC
 - ♦ 3 or 4 MIMOSA-17 or/and -18 sensors (more in future)
 - ♦ Commissionning in June '07 at DESY
 - ♦ Real data taking in Sep. & Nov. '07 at CERN-SPS
 - $\diamond~$ R.o. freq. $\sim~$ 10 (M-18) or 25 frames/s (M-17)
 - ♦ Running in front of Si-strip telescope ▷▷▷▷▷▷▷

Several studies at CERN-SPS:

CMOS-VD

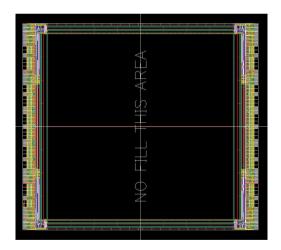
- ightarrow response of sensors to inclined tracks: $0 80^{\circ}$
- ← performances of sensors exposed to non-ionising radiation
- ightarrow comparison of "14 μm " to "20 μm " epitaxy



Mimosa resolution vs pitch

Single point resolution versus pixel pitch:

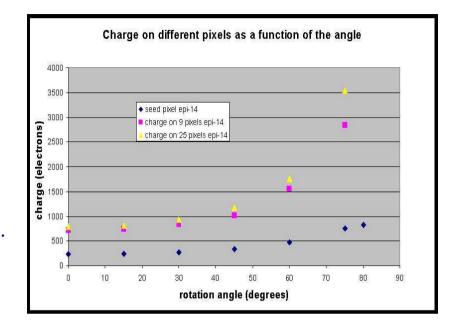
clusters reconstructed with eta-function,
 exploiting charge sharing between pixels (12-bit ADC)

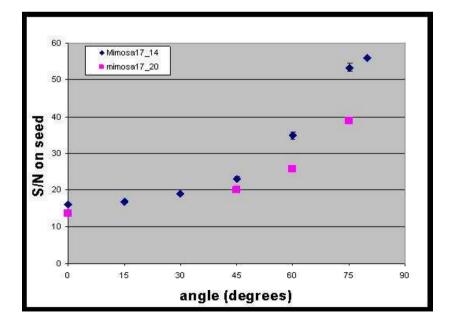

 $oldsymbol{a}$ $\sigma_{f sp} \sim {f 1}~\mu{f m}$ (10 μm pitch) $ightarrow {ig 3}~\mu{f m}$ (40 μm pitch)

Recent result obtained with very small pitch :

 \Rightarrow MIMOSA-18 : 512imes512 pixels with 10 μm pitch, analog output, S/N \sim 30

- \Rightarrow tested on Si-strip telescope at CERN-SPS (120 GeV π^-) in Nov. '07
 - \Rightarrow single point resolution observed (prelim.) \lesssim 1 μm !!!
 - \longleftrightarrow for EUDET telescope to allow \lesssim 1 μm on DUT surface with few GeV e^ beam

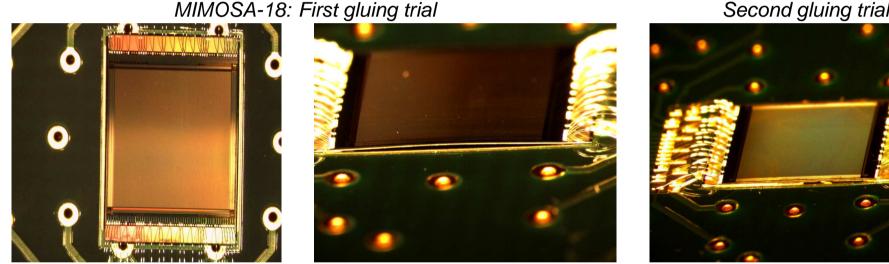



Motivation

- ⇔ simulate clusters from particules produced at shallow angle or from low e_{BS}^{\pm} (low p → curling in ϕ)
- \Leftrightarrow collect cluster data at various angles \rightarrowtail data base
- ⇔ adapt signal processing µcircuits and cluster rec. algo. to inclined tracks : 2–3 seed pixels, large signal, large clusters, …

Measurements performed with TAPI at CERN-SPS

- \Rightarrow MIMOSA-17 (30 μm pitch, rad. tol. pixel), T_{room}
- \Rightarrow measure Q, S/N, σ_{sp} , σ_{θ} at θ = 0, 15, 30, 45, 60, 75, >80°
- ⇔ set-up data base for complete VD simulations (Lol)
- \Rightarrow model cluster characteristics vs p & θ for "fast" VD simul.
- work performed together with Lukazc Maczewski (Warsaw) (also: gyroscopic sensor support installed on DESY beam)



Thinning of AMS-0.35 engineering run reticles :

- ← Thinning performed by APTEK (S.F. bay) via LBNL (STAR coll.)
- \Rightarrow Thickness claimed by provider : 50 $\mu m \rightarrow$ measured with IPHC bonding machine : \sim 50–70 μm
- \Rightarrow MIMOSA-18 (5.5×7.5 mm²) & -17 (8×9 mm²) mounted on PCB for tests \rightarrow keep them flat !

Second gluing trial

- \Rightarrow Tests with ⁵⁵ Fe source show no performance loss (noise, gain)
- \Rightarrow Tests of MIMOSA-18 mounted on TAPI with 120 GeV π^- at CERN-SPS (Nov. '07)
 - \mapsto no performance loss observed $\mapsto \epsilon_{det}$ = 99.79 \pm 0.15 % (prelim.)

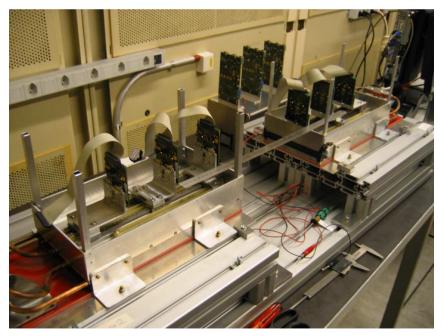
Preliminary conclusion : Thinning down to \sim 50 μm seems on a good track

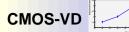
CMOS-VD

Vertexing Applications of MIMOSA Chips: Short & Mid-Term

Vertex Detector upgrade for STAR expt at RHIC

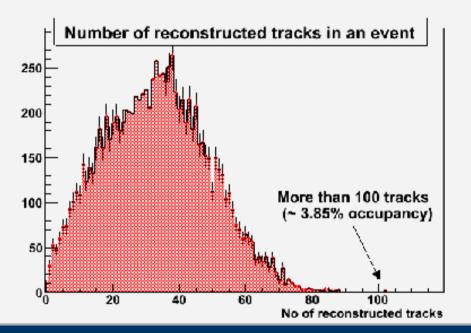
- ightarrow 2 cylindral layers : \sim 1600 cm 2
- $m \simeq \gtrsim$ 160 million pixels (\leq 30 μm pitch)
- $\triangleright \triangleright$ 2007: telescope (3 MIMO-14) \rightarrow BG meast, no pick-up !
 - \diamond 2008/09: digital outputs without arnothing (\leq 640 μs)
 - \diamond 2010/11: digital outputs with integrated Ø (\leq 200 μs)




Beam telescope (FP6 project EUDET)

- $m \simeq$ provide \lesssim 1 μm resolution on 3 GeV e $^-$ beam (DESY)

≏ 2 steps :


- ⊳⊳ 2007: analog outputs
- ightarrow telescope commissionned & running (\lesssim 100 tracks / frame)
- ightarrow used by non JRA-1 members at SPS (e.g. SILC)
- \diamond 2008/09: digital outputs with integ. arnothing (\sim 100 μs)

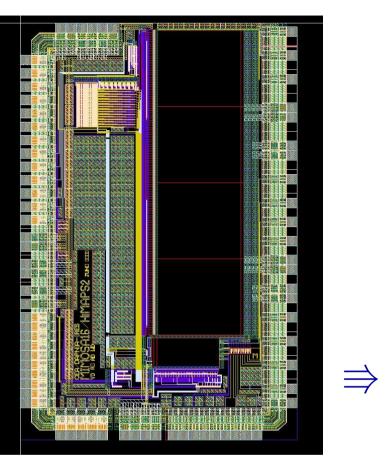
Performances...

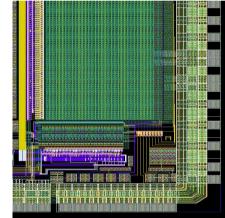
• This impressive plot is showing the pretty mature development stage of the tracking software.

CERN large multiplicity data taken two weeks ago

Integration of Signal Processing

Inside Pixels and on Chip Periphery


High R.-O. Speed Architecture : 2nd Prototype = MIMOSA-16


MIMOSA-16 design features :

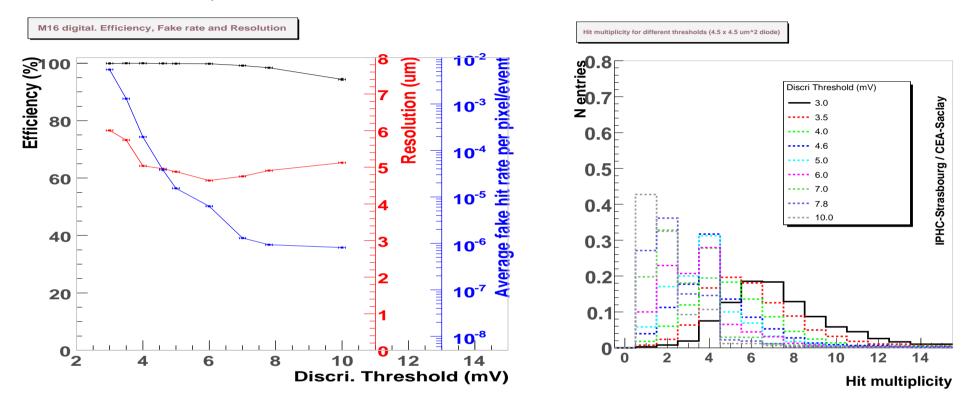
- AMS-0.35 OPTO translation of MIMOSA-8 $\hookrightarrow \sim$ 11–15 μm epitaxy instead of \lesssim 7 μm
- \bullet 32 // columns of 128 pixels (pitch: 25 μm)
- on-pixel CDS (DS at end of each column)
- 24 columns ended with discriminator
- 4 sub-arrays :

CMOS-VD

- S1 : like MIMOSA-8 (1.7x1.7 μm^2 diode)
- S2 : like MIMOSA-8 (2.4x2.4 μm^2 diode)
- S3 : S2 with ionising radiation tol. pixels
- S4 : with enhanced in-pixel amplification (against noise of read-out chain)

Tests of analog part ("20" & "14" μm epitaxy) :

- ullet sensors illuminated with 55 Fe source and F $_{r.o.}$ varied up to \gtrsim 150 MHz
- measurements of N(pixel), FPN (end of column), pedestal variation, CCE (3x3 pixel clusters) vs $F_{r.o.}$

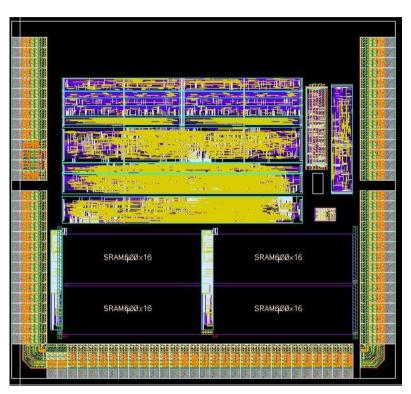

M.i.p. detection with Si-stip telescope studied at CERN in Sept. '07 ightarrow characterisation of digital response :

- $ullet \pi^-$ beam of \sim 180 GeV/c
- measurements of SNR, det. efficiency, fake rate, cluster characteristics, spatial resolution vs discri. threshold

CMOS-VD

ERN-SPS (\sim 180 GeV π^-) \rightarrow results of S4 ("14 μm " epitaxy)

Read-out time \sim **50** μs (\sim 1/4 of max. freq. due to DAS limitations)


Major result \rightarrowtail at least one pixel architecture validated for next steps : S4 (SNR \sim 16)

Discri. Threshold	det. efficiency	fake rate	sgle pt resolution	
4 m V	99.96 \pm 0.03 (stat) %	\sim 2 \cdot 10 $^{-4}$	\sim 4.8–5.0 μm	
6 m V	99.88 \pm 0.05 (stat) %	$< 10^{-5}$	\sim 4.6 μm	

Zero Suppression Micro-Circuit : SUZE-01 Fabrication & Tests

Ist chip (SUZE-01) with integrated \emptyset and output memories (no pixels) :

- * 2 step, raw by raw, logic :
 - \diamond step-1 (inside blocks of 64 columns) : identify up to 6 series of \leq 4 neighbour pixels per raw delivering signal > discriminator threshold
 - \diamond step-2 : read-out outcome of step-1 in all blocks and keep up to 9 series of \leq 4 neighbour pixels
- * 4 output memories (512x16 bits) taken from AMS I.P. library
- $\%\,{\rm surface}\sim {\rm 3.9}\times {\rm 3.6}\,{\rm mm}^2$

Status :

CMOS-VD

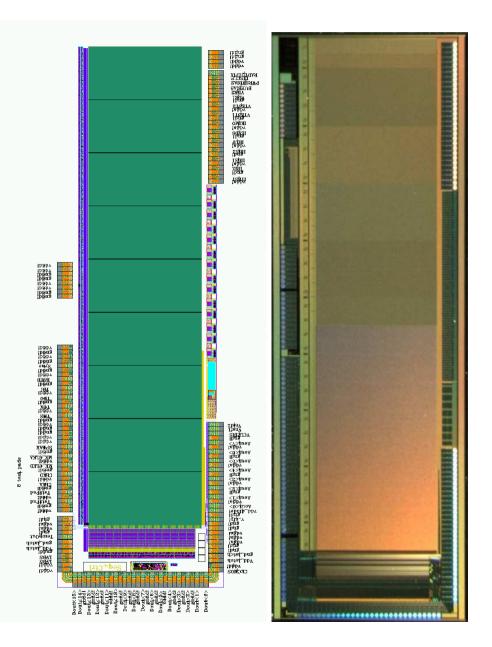
- * back from foundry end of Sept. '07 \rightarrow tests almost completed
- * design performances reproduced up to 1.15 \times design read-out frequency (T_{room}) :
 - > noise values as predicted, no pattern encoding error

Final prototype with column // architecture : MIMOSA-22

Extension of MIMOSA-16 \rightarrowtail larger surface, smaller pitch, optimised pixel, JTAG, more testability

■ Pixel characteristics (optimal charge coll. diode size ?):

- st pitch : 18.4 μm (compromise resolution/pixel layout)
- * 128 columns ended with discriminator
- * 8 columns with analog output for test purposes
- * 9 sub-matrices of 64 rows :
 - 17 pixel designs w/o ionising rad. tol. diode
 - \Rightarrow active digital area : 128 x 576 pixels (\sim 25 mm²)

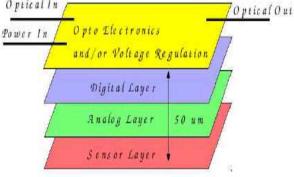

Testability :

CMOS-VD

- $\ensuremath{ \ensuremath{ \times } }$ JTAG + bias DAC \rightarrowtail programmable chip steering
- 2 additionnal DC voltages to emulate pixel's output for independent discriminator performance assessment
 * output frequency < 40 MHz

Status :

- Back from foundry \rightarrow tests started in Feb.'08 (analog outputs)
 - $ightarrow {}^{55}$ Fe source : chip active over whole surface (35°C, 92 μs)



Steady progress towards perfo. adapted to running conditions with beam BG >> MC simulations

- **2008 :** * final EUDET telescope sensor fab.: $1 \times 2 \text{ cm}^2$; 0.6 Mpix; 100 μs ; digital output with \emptyset ; 50 μm thin * STAR-HFT1 sensor fab.: $2 \times 2 \text{ cm}^2$; 0.4 Mpix; 640 μs ; digital output; 50 μm thin \rightarrow D⁰ phys. in 2010 * several other R&D lines: fast archi. with ADC, new fab. proc., system integ., etc. \rightarrow FP-7 * vertex detector design optimisation with physics processes \rightarrow Lol
- ► > 2008 : * proto-ladder for outer/inner layers in 2010/2011 ($\leq 0.2 \% X_0$), based on STAR-HFT ladder ($\leq 0.28 \% X_0$) * final sensor designs for outer/inner layers in 2010/2011 * STAR-HFT2 sensor (data taking starting in 2011)

Perspective : $3DIT MIMOSA \equiv 4$ chip sandwich

 \hookrightarrow optimal technology for each tier

BACK-UP SLIDES

Pixel design :

- st adapt existing pixel architectures from 25 μm to < 20 μm pitch
- st adapt sensing diode dimensions to maximise CCE (surface \nearrow) & gain (surface \searrow) : optimum \sim 10–15 μm^2
- ▶ find optimal pixel pitch : single point resolution (pitch \searrow) against reliable design (pitch \nearrow)

Column read-out architecture :

- st adapt existing S&H and discriminators from 25 μm to < 20 μm pitch
- $\ensuremath{\overset{\scriptstyle }}$ integrate $\ensuremath{\mathcal{O}}$ and output memories

Row and pixel steering (consequences of large surface) :

- * adapt pixel steering (speed) inside column to avoid capacitance due to large nb of switches \rightarrow pixel design
- * adapt row steering to their length (2 cm)

Sensor autonomy and testability :

- * JTAG + bias DAC \rightarrowtail programmable chip steering
- * 2 or 3 additionnal DC voltages to emulate pixel's output for independent discriminator performance assessment

Developments simultaneously oriented towards well focussed applications and towards generic objectives useful to several applications

Application	version	2006	2007	2008	2009	2010	2011
STAR HFT-1		R&D	final proto.	Prod.			
	HFT-2	R&D	R&D	R&D	proto final	Prod.	
EUDET	BT-1	2 Prod.	commissioned				
	BT-2	R&D	final proto	Prod.			
Imaging		R&D	final proto	Prod. ?			
Generic topics							
Fast sensors :	o architecture	R&D	R&D	R&D +	R&D ++	ILC proto	CBM proto
	○ ADC	R&D	R&D	final proto	~		
	 digital 	pre-study	R&D	final proto	~		
Radiation tolerance		R&D	R&D	R&D	R&D	7	
Fabrication technologies		R&D	R&D	R&D	R&D	∕`???	
Thinning		R&D	D	D	OK ???		

Radiation Tolerance: Summary of AMS-0.35 OPTO Evaluation

Established ionising radiation tolerance (reminder): 1 MRad – $2 \cdot 10^{12} n_{eq}/cm^2$ – $10^{13} e_{10 MeV}^{-}/cm^2$ OK

Non-ionising radiation tolerance (Summer / Autumn 2007):

* MIMOSA-18 irradiated with \leq 10¹³ O(1 MeV) n/cm² (+ 100–200 kRad γ gas) \Rightarrow tested on \sim 120 GeV π^- beam (SPS)

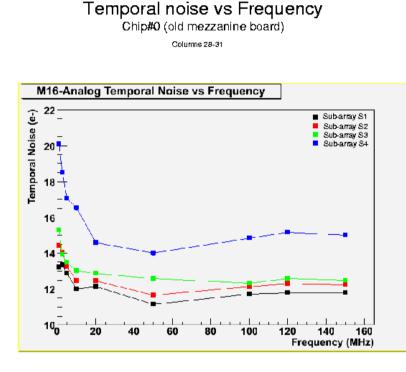
▷ Preliminary results:

CMOS-VD

• T = -20° C • t_{r.o.} ~ 3 ms • cuts at 5N (seed) & 2N (crown)

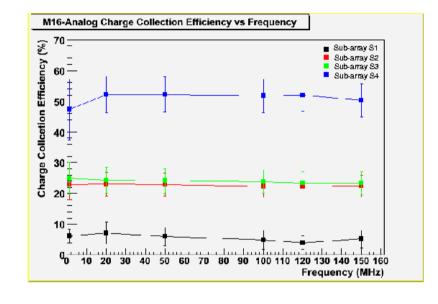
Seed pixel noise for re	eal track cluster 10 ¹³	Charge in 9 pixels		Fluence (n $_{eq}$ /cm 2)	0	$6{\cdot}10^{12}$	$1 \cdot 10^{13}$
5000	6X10 ¹³ — not irradiated	400 350 300	6X10 ¹³ mot irradiated	Noise (e ^{-}ENC) (-20 $^{\circ}$ C, 3 ms, 5N/2N)	10.8 ± 0.3	12.2 ± 0.3	14.3 ± 0.3
4000		250		${f Q}_{clust}$ (e)	1026	680	560
3000				S/N (MPV)	28.5	20.4	14.7
2000		150 []]]]			\pm 0.2	\pm 0.2	\pm 0.2
		100 50 0 50 0 50 50 50 50 50 50	0 2500 3000 3500 4000	Det. Eff. (%)	99.93 ± 0.03	99.85 ± 0.05	99.5 ± 0.1

 \sim 10 13 n/cm 2 /s affordable at T < 0 $^{\circ}$ C & t $_{r.o.}$ \sim O(1) ms & 10 μm pitch


 \hookrightarrow study tolerance vs pitch, diode size, r.o. speed, digital output,, annealing ?????

Integration of Signal Processing

Inside Pixels and on Chip Periphery


Pixel noise and charge collection efficiency ("20 μm " epitaxy) :

Charge Collection Efficiency vs Frequency

Chip#0 (old mezzanine board)

Columns 28-31

\Rightarrow Noise performance satisfactory (like MIMOSA-8 and -15)

- \Rightarrow CCE: very poor for S1 (1.7x1.7 μm^2) & poor for S2/S3 (2.4x2.4 μm^2)
- ightarrow already observed with MIMOSA-15 but more pronounced for "20 μm " option
- \hookrightarrow suspected origin: diffusion of P-well, reducing the N-well/epitaxy contact, supported by CCE of S4 (4.5x4.5 μm^2 diode)

4

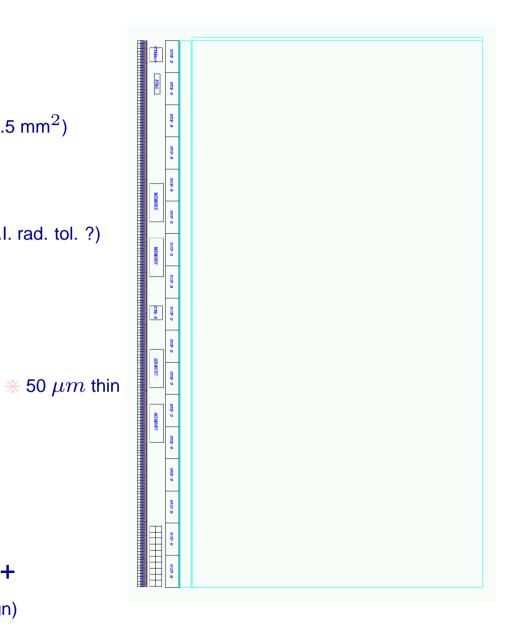
Next steps :

- *Mid-term : EUDET, STAR → real experimental conditions*
- Long-term full sensor prototyping : CBM (and ILC)

Integrated $\varnothing
ightarrow$ real scale sensors without ADC ($\sigma_{sp} \sim$ 4–6 μm) :

- * EUDET telescope (2008)
- * STAR-HFT1/2 (2010/11)
- **★ CBM-MVD (**≥ 2012)

Increasing read-out speed and replacing discriminators with 4-5 bit ADC (ILC) :


* read-out speed \rightarrow CBM-MVD (\gtrsim 2012)

Autumn 2008 : MIMOSA-22+ = Final EUDET Sensor * MIMOSA-22 complemented with \emptyset (SUZE-01) 1 or 2 sub-arrays (best pixel architectures of MIMOSA-22) Active surface : 1088 columns of 544/576 pixels (20.0 x 10/10.5 mm²) st Read-out time \sim 100 μs * Chip dimensions : \sim 20 x 12 mm² \triangleright Opportunity for an engineering run combining various chips (N.I. rad. tol. ?) Devts performed in *//* : * June 2008 : submission of final STAR-HFT1 sensor $ightarrow \sim 2 \times 2 \text{ cm}^2$ * 400 kpix/sensor $* \leq 640 \ \mu s$ \hookrightarrow equip 2 or 3 sectors of 1 + 3 ladders (10 chips/ladder) * explore new tracks : XFAB, IBM-0.18 OPTO, 3DIT, ...

Beyond 2008:

 $\texttt{ * design sensor for STAR-HFT2} \rightarrowtail \texttt{ extension of MIMOSA-22+}$

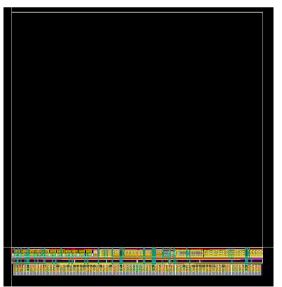
st increase r.o. frequency by \sim 50 % (new $extsf{Ø}$ & memory design)

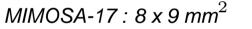
System Integration Studies

Thinning

Ladder design

Data Flow




Thinning motivations and constraints :

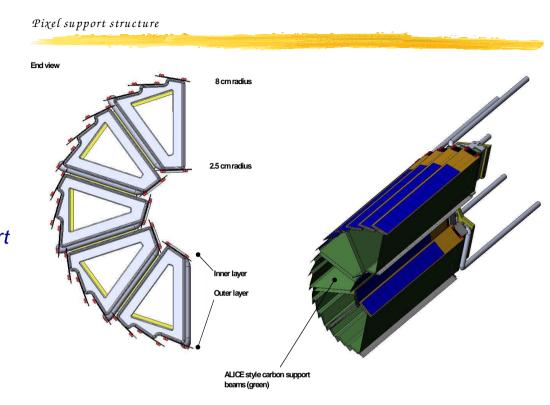
- \Leftrightarrow thin sensors to \lesssim material budget of "mechanical support"
- ⇔ minimal thickness of CMOS sensors :

10–15 μm (metal layers and SiO $_2$) + 15 μm (T + epitaxy) + 5–10 μm (substrate) pprox 30–40 μm

- thinned sensors should be "easy" to handle
- ⇔ thinning procedure should have high mechanical yield and preserve detection performances
- \Rightarrow CMOS technology fab. yield \rightarrow foster diced sensors (despite few 10⁻⁴ X₀ add. mat. budget / ladder)
- ⇔ thinning of individual sensors seems preferable to full wafer thinning : cheaper but same quality ?

MIMOSA-5 : 6" wafer

Status of Thinning Studies and Ladder Prototyping (STAR)


Predominantly driven by STAR HFT project at LBNL

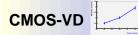
Thinning of MIMOSA-5 wafers :

CMOS-VD

- \Rightarrow 3 wafers thinned via LBNL to 50 \pm 5 μm
- result satisfactory (after pre-dicing): sensors can be manipulated and mounted on support
 ⇒ 3 ladder prototypes fabricated at LBL (≥ 0.25 % X₀)

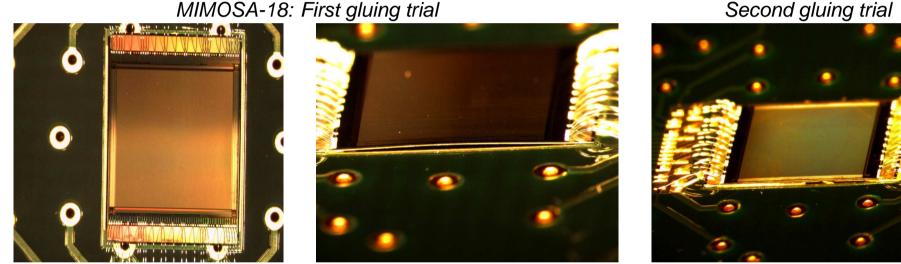
 \rightarrowtail up to 9 sensors mounted on ladder and tested

Thinning of individual sensors to \sim 50 μm :


 \Rightarrow several chips of \sim 0.2 – 3.5 cm² (MIMOSA-5, -10, -14, -17, -18, -20, etc.) thinned individually via LBNL

 \Rightarrow recent result: MIMOSA-18 prototype thinned to 50 μm was successfuly tested with 55 Fe at IPHC

 \rightarrowtail no change of performances (e.g. noise, gain, det.eff, ...) \rightarrowtail next slide


⇔ Plans : • replace present (thick) sensors (MIMOSA-17, -18) equipping telescopes (EUDET, TAPI, ...)

- equip STAR-HFT1 with thinned sensors (2008/09) \rightarrow 0.25 0.3 % X₀
- extend ladder devt to ILC Vertex Detector (LBNL-ILC team ?) \rightarrow goal \leq 0.2 % X₀

Thinning of AMS-0.35 engineering run reticles :

- ← Thinning performed by APTEK (S.F. bay) via LBNL (STAR coll.)
- \Rightarrow Thickness claimed by provider : 50 $\mu m
 ightarrow$ measured with IPHC bonding machine : \sim 50–70 μm
- \Rightarrow MIMOSA-18 (5.5×7.5 mm²) & -17 (8×9 mm²) mounted on PCB for tests \rightarrow keep them flat !

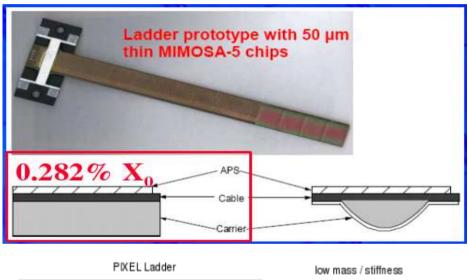
Second gluing trial

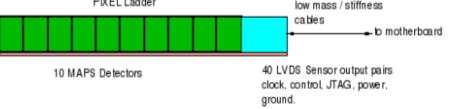
- \Rightarrow Tests with ⁵⁵ Fe source show no performance loss (noise, gain)
- \Rightarrow Tests of MIMOSA-18 mounted on TAPI with 120 GeV π^- at CERN-SPS (Nov. '07)
 - \mapsto no performance loss observed $\mapsto \epsilon_{det}$ = 99.79 \pm 0.15 % (prelim.)

Preliminary conclusion : Thinning down to \sim 50 μm seems on a good track

Data flow:

- hundreds of millions of fast pixels ⇒ data flow is a MAJOR CONCERN !!!
- \Rightarrow U.L.M. Photonics : 250x250 μm^2 electro-optical converters \mapsto several Gbits/s
- ⇔ design of laser driver under study at IPHC

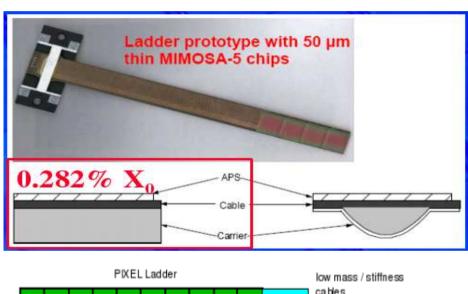

New concept of mechanical support & heat extractor:

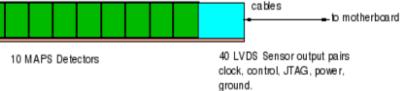

- ⇔ objective : mount, connect & operate \sim 4 MIMOSA-18 (?) sensors, thinned to 50 μ m, on 50–100 μ m thin, aluminised, CVD diamond slabs \equiv mech. support heat extractor cable support
- \Leftrightarrow status : 3 diamond 3" wafers fabricated \rightarrow electroplating and lithography, etc.
 - >>> proto-ladders back at IPHC-Strasbourg before Summer

General remark :

- CMOS sensors call for CHALLENGING system integration solutions : connexions (flex cable), data flow, ...
- \Rightarrow Lot of expertise and effort needed \Rightarrow Forces needed NOW !

- Minimise multiple scattering inside detector material wherever possible (b \searrow)
 - → thickness, amount and choice of material for mechanical support, gluing, electrical connexions, thermal conductivity, power dissipation (avoid active cooling), ...
- Goal : < 0.2 % radiation length / layer (including chip + support + services) (\Leftrightarrow < 200 μm of silicon)
- Presently < 0.3 % seems achievable (STAR vertex detector)
- STAR ladder : kapton cable contributes with 0.090 % and carrier with 0.110 % of radiation length
 - \Rightarrow replace them with aluminised CVD diamond ?
 - \hookrightarrow bonus in thermal transport
- (CMOS) Sensor fabrication yield is a concern
 ⇒ diced sensors prefered to stitched sets of 5–10 sensors
- \hookrightarrow inactive zones (\gtrsim 40 μm wide) at sensor edge from dicing
 - \Rightarrow can these zones be reduced to \lesssim few μm with plasma etching ?




- Minimise multiple scattering inside detector material wherever possible (b \searrow)
 - → thickness, amount and choice of material for mechanical support, gluing, electrical connexions, thermal conductivity, power dissipation (avoid active cooling), ...
- Goal : < 0.2 % radiation length / layer (including chip + support + services) (\Leftrightarrow < 200 μm of silicon)
- Presently < 0.3 % seems achievable (STAR vertex detector)
- STAR ladder : kapton cable contributes with 0.090 % and carrier with 0.110 % of radiation length
 - \Rightarrow replace them with aluminised CVD diamond ?
 - \hookrightarrow bonus in thermal transport
- (CMOS) Sensor fabrication yield is a concern
 ⇒ diced sensors prefered to stitched sets of 5–10 sensors

 \hookrightarrow inactive zones (\gtrsim 40 μm wide) at sensor edge from dicing

 \Rightarrow can these zones be reduced to \lesssim few μm with plasma etching ?

► 3D Integ. Techno. include thinning and dicing capacities of great interest

