CALICE T3B - The time structure of hadronic showers in Tungsten and Steel

Frank Simon
MPI for Physics & Excellence Cluster 'Universe'
Munich, Germany

for the CALICE Collaboration

LCWS, Arlington, TX, USA, October 2012

Outline

- Hadron Calorimetry at CLIC: Competing Requirements
- CALICE T3B A Setup for Timing Measurements
 - T3B in Tungsten & Steel
 - Data Analysis
- Timing Results & Comparison to Simulations
- A 4th Dimension: Longitudinal Information
 - The Life of a Pion on a Tungsten Calorimeter
- Summary & Outlook

Original Motivation: Hadron Calorimetry at CLIC

- CLIC: A 3 TeV e⁺e⁻ linear collider
 The key CLIC feature: High Energy!
 - 3 TeV energy means in principle up to 1.5 TeV jets

Shower containment and leakage is a crucial issue

- A (very) deep hadron calorimeter is needed
- → Use compact absorbers to limit the detector radius: Tungsten a natural choice

Original Motivation: Hadron Calorimetry at CLIC

- CLIC: A 3 TeV e⁺e⁻ linear collider
 The key CLIC feature: High Energy!
 - 3 TeV energy means in principle up to 1.5 TeV jets

Shower containment and leakage is a crucial issue

- A (very) deep hadron calorimeter is needed
- Use compact absorbers to limit the detector radius: Tungsten a natural choice
- Key challenge (linked to high energy and machine-specific issues): Background
 - γγ → hadrons substantial:
 ~ 12 hadrons/bunch crossing in the barrel region
 (4 GeV / bunch crossing) [up to 50 hadrons /
 50 60 GeV barrel + endcap + plug calorimeters]
 - extreme bunch crossing rate: every 0.5 ns
- ✓ Very good time resolution in all detectors important to limit impact of background!

• Hadronic showers have a rich substructure:

Hadronic showers have a rich substructure: instantaneous, detected via energy loss of electrons and positrons in active medium absorberelectromagnetic component hadronic component heavy fragment λ • instantaneous component: charged hadrons detected via energy loss of charged hadrons in active medium

> delayed component: photons, neutrons, protons from nuclear deexcitation following neutron capture, detected via e⁺e⁻, momentum transfer to protons in hydrogenous active medium, energy loss, contributions from time of flight of low energy particles

- → Importance of delayed component strongly depends on target nucleus
- Sensitivity to time structure depends on the choice of active medium

Hadronic showers have a rich substructure: instantaneous, detected via energy loss of electrons and positrons in

active medium

electromagnetic component

Detector optimization and performance studies rely on Geant4:

How well do the simulations reproduce the time structure

of the response in the highly granular calorimeters?

r de-

ergy

excitation following neutron capture, detected via e⁺e⁻, momentum transfer to protons in hydrogenous active medium, energy loss, contributions from time of flight of low energy particles

- Importance of delayed component strongly depends on target nucleus
- Sensitivity to time structure depends on the choice of active medium

absorber

T3B: An Experiment for the Study of the Time Structure

- The CALICE Scintillator-Tungsten HCAL A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)

T3B: An Experiment for the Study of the Time Structure

- The CALICE Scintillator-Tungsten HCAL A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)
- T3B (Tungsten Timing Test Beam)
 - Goal: Measure the time structure of the signal within hadronic showers in a
 - Tungsten calorimeter with scintillator readout
 - Use a (very) small number of scintillator cells, read those out with high time resolution
 - Record signal over long time window:
 - \sim 2 µs to sample the full shower development

T3B: An Experiment for the Study of the Time Structure

- The CALICE Scintillator-Tungsten HCAL A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)
- T3B (Tungsten Timing Test Beam)
 - Goal: Measure the time structure of the signal within hadronic showers in a
 - Tungsten calorimeter with scintillator readout
 - Use a (very) small number of scintillator cells, read those out with high time resolution
 - Record signal over long time window:
 - $^{\sim}$ 2 μs to sample the full shower development
 - First information on time structure, possibility for comparisons to Geant4, but: no complete "4D" shower reconstruction!

The T3B Setup - Tungsten

• 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower

beam axis through cell 0

435 mm

The T3B Setup - Tungsten

• 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower

Stand-alone system:

- Installed downstream of CALICE WHCAL, depth \sim 5 λ
- Each cell read out with 1.25 GS oscilloscope, 2.4
 µs sampling time per event
- Calibration triggers on dark noise between spills

Synchronization with CALICE

Triggered by CALICE trigger - common analysis possible

The T3B Setup - Steel

• 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower

beam axis through cell 0

435 mm

Stand-alone system only:

- Installed downstream of CALICE SDHCAL (Glass RPCs between steel absorbers), depth $^{\sim}$ 6 λ
- Identical readout for T3B
- No correlation of T3B and SDHCAL data streams
 - Different DAQ version
 - Data taken during SDHCAL commissioning: Low data rate, insufficient for timing measurements
 - ▶ Standalone trigger for T3B

Data Analysis - Technique

- For each channel, a complete waveform with 3000 samples (800 ps /sample) is saved
- Waveform decomposed into individual photon signals, using averaged 1 p.e. signals
 - Average 1 p.e. signal taken from calibration runs between spills, refreshed every 5 minutes: Continuous automatic gain calibration

- Reconstruction of the time of each photo-electron
- In addition: Constantly adjusted MIP calibration based on temperature and voltage

Data Analysis - Results in Steel & Tungsten

- The "universal" T3B observable: Time of First Hit
 - Multiple hits per tile in one event are rare: < 3% at 30% amplitude of primary hit

Data Analysis - Results in Steel & Tungsten

- The "universal" T3B observable: Time of First Hit
 - Multiple hits per tile in one event are rare: < 3% at 30% amplitude of primary hit
- Substantial difference between showers in steel and tungsten: More pronounced late activity in W

Timing as a Function of Hit Energy

• In steel late energy deposits are mostly of low energy, in tungsten also higherenergy late contributions are seen

Timing as a Function of Hit Energy

- In steel late energy deposits are mostly of low energy, in tungsten also higherenergy late contributions are seen
- All studied physics lists reproduce behavior in steel satisfactorily
- Neutron treatment important in Tungsten QGSP_BERT_HP and QBBC only

Timing as a Function of Radius

- Late energy deposits are more important in the outer regions of a shower
 - More pronounced effect in tungsten than in steel

Timing as a Function of Radius

- Late energy deposits are more important in the outer regions of a shower
 - More pronounced effect in tungsten than in steel
 - In steel: Good description by all physics lists (on the level of a few 100 ps)
- In tungsten: Neutrons are of key importance only QGSP_BERT_HP and QBBC provide a good prediction

Adding a 4th Dimension: Depth

Correlation of T3B and WAHCAL events provides a powerful addition:

- Event-by-event measurement of the depth of T3B relative to the shower start
- \blacktriangleright By combining large data samples, the average time structure of hadronic showers can be measured over a depth of 5 $λ_I$

▶ 4D shower images with unprecedented granularity

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity
maximum in layer 39
(rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Longitudinal Dependence - Comparison to Simulations

 Increased importance of late shower
 contributions towards
 the rear of the shower

- Well reproduced by physics lists with precise neutron treatment
 - QGSP_BERt shows significant deviations from the data overestimation of late components towards shower rear

Longitudinal Dependence - Comparison to Simulations

 Increased importance of late shower
 contributions towards
 the rear of the shower

- Region most dominated by electromagnetic subshowers: Large dominance of prompt hits
- Well reproduced by physics lists with precise neutron treatment
 - QGSP_BERt shows significant deviations from the data overestimation of late components towards shower rear

Summary & Outlook

- Time resolution is important in PFA calorimeters, in particular at CLIC
- Hadronic showers are not instantaneous: Limits to the time resolution of the hadronic calorimeters
- CALICE T3B is a dedicated experiment to provide measurements of the time structure with scintillators & SiPM readout in steel and tungsten
- Results demonstrate that good treatment of neutrons, provided by the GEANT4
 QGSP_BERT_HP and QBBC physics lists, is crucial for tungsten
- Time structure in steel in general well described by all investigated models
- Together with the CALICE WAHCAL longitudinally resolved time measurements are possible: Increased importance of late components in shower rear
- Coming up: Results of timing measurements with RPCs in Tungsten Data being analyzed!

Backup

Simulations

- Geant 4.9.3.p01, Simplified simulation setup:
 - 31 layer HCAL, with 1 cm W + 1 mm Steel absorber
 - CALICE AHCAL cassette (2 x 2 mm Steel, 5 mm scintillator + PCB, cables, air)
 - Use T3B as the last layer of the setup
- Simulation of the time structure:
 - record the time and energy deposit of each Geant4 step in the T3B scintillator volume
 - bin in 800 ps time bins, convert to number of photons according to the energy in the bin
 - smear the time distribution of the photons according to observed time distribution of muon signals
 - ad-hoc fit with a Landau: $\sigma \sim 1.3$ ns

T3B Scintillator Tiles - Performance Studies

Gain calibration of photon sensors: dark noise

T3B Scintillator Tiles - Performance Studies

Gain calibration of photon sensors: dark noise

Calibration of tile response to charged particles: Penetrating electrons from ⁹⁰Sr
 Calibration factor (most probable value) extracted from Landau conv. with
 Gaussian fit

T3B Scintillator Tiles - Performance Studies

Gain calibration of photon sensors: dark noise

Campianion racion (most propapie value) extracted from Landau conv. with Gaussian fit

Distribution of response over sample of T3B tiles: 10% RMS variation

