

Measuring Unification

[arXiv:1007.2190 [hep-ph]]

in collaboration with C. Adam, J.-L. Kneur, R. Lafaye, T. Plehn, D. Zerwas

Michael Rauch | October 21, 2010

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

Motivation & Outline

- Supersymmetry predicts accurate unification of gauge couplings
- High-scale models (like mSUGRA) also predict unification of soft-breaking masses
 ⇒ Test this!

Outline

- Low-scale setup: Experimental input
 Fit of general MSSM (20/22 parameters)
- Results for LHC and LHC+ILC
- Top-down vs. bottom-up
- Outlook: S-LHC and CLIC

Motivation & Outline

- Supersymmetry predicts accurate unification of gauge couplings
- High-scale models (like mSUGRA) also predict unification of soft-breaking masses
 Test this!

Outline

- Low-scale setup: Experimental input
 Fit of general MSSM (20/22 parameters)
- Results for LHC and LHC+ILC
- Top-down vs. bottom-up
- Outlook: S-LHC and CLIC

Motivation & Outline

- Supersymmetry predicts accurate unification of gauge couplings
- High-scale models (like mSUGRA) also predict unification of soft-breaking masses
 ⇒ Test this!

Outline

- Low-scale setup: Experimental input
 Fit of general MSSM (20/22 parameters)
- Results for LHC and LHC+ILC
- Top-down vs. bottom-up
- Outlook: S-LHC and CLIC

Parameter Point

Benchmark Point: SPS1a (mSUGRA) $m_0=100~{\rm GeV}$, $m_{1/2}=250~{\rm GeV}$, $A_0=-100~{\rm GeV}$, $\tan\beta=$ 10, ${\rm sgn}\,\mu=+1$

- light sleptons
- light (≈ wino, bino) and heavy (≈ higgsino) gauginos
- moderately heavy gluinos and squarks
- light Higgs around the LEP limit
- Spectrum and RGE running: Suspect [Kneur et al.] cross-checks: SoftSusy [Allanach]

Experimental Input

LHC "experimental" data from cascade decays (best precision obtainable) $\sqrt{S}=$ 14 TeV, integrated luminosity $\mathcal{L}=300~fb^{-1}$

Measurement	Value	Errors (GeV)			
	(GeV)	(stat)	(LES)	(JES)	(theo)
(m_{llg}^{max}) :Edge $(\tilde{q}_L, \chi_2^0, \chi_1^0)$	449.08	1.4		4.3	5.1
(m_{llg}^{min}) :Thres $(\tilde{q}_L, \chi_2^0, \tilde{\mu}_R, \chi_1^0)$	216.00	2.3		2.0	3.3
(m_{ll}^{max}) :Edge $(\chi_2^0, \tilde{l}_R, \chi_1^0)$	80.852	0.042	0.08		1.2
m_h	108.7	0.01	0.25		2.0

Experimental Input

LHC "experimental" data from cascade decays (best precision obtainable) $\sqrt{S}=$ 14 TeV, integrated luminosity $\mathcal{L}=300~fb^{-1}$

Measurement	Value	Errors (GeV)			
	(GeV)	(stat)	(LES)	(JES)	(theo)
(m_{llg}^{max}) :Edge $(\tilde{q}_L, \chi_2^0, \chi_1^0)$	449.08	1.4		4.3	5.1
(m_{lla}^{\min}) :Thres $(\tilde{q}_L, \chi_2^0, \tilde{\mu}_R, \chi_1^0)$	216.00	2.3		2.0	3.3
(m_{ll}^{max}) :Edge $(\chi_2^0, \tilde{l}_R, \chi_1^0)$	80.852	0.042	0.08		1.2
m _h "	108.7	0.01	0.25		2.0
			·		

ILC data direct mass measurements

 \sqrt{S} up to 800 GeV, integrated luminosity $\mathcal{L}=500~\text{fb}^{-1}$

Particle	Value	Errors (GeV)		
	(GeV)	(stat)	(theo)	
h	108.7	0.05	2.0	
χ_1^0	97.22	0.05	0.5	
\tilde{t}_1	398.93	2.0	4.0	

Experimental Input

LHC "experimental" data from cascade decays (best precision obtainable) $\sqrt{S}=$ 14 TeV, integrated luminosity $\mathcal{L}=300~fb^{-1}$

ILC data direct mass measurements \sqrt{S} up to 800 GeV, integrated luminosity $\mathcal{L}=500~\text{fb}^{-1}$

S-LHC: increased statistics

same measurements as LHC, systematic errors unchanged $\sqrt{S}=$ 14 TeV, integrated luminosity $\mathcal{L}=$ 3 ab $^{-1}$

CLIC: higher center-of-mass energy \Rightarrow complete squark sector visible $\sqrt{S}=3$ TeV, squark mass measurements with 0.5% statistical error

Theoretical Errors

- Addition of individual theory errors linearly (not in quadrature!) and without correlations (conservative), e.g. for kinematic edges
- Numerical value: 1% for gluino and squark masses,
 2.5% for gluino and squark masses,

0.5% for all other sparticles 2 GeV for m_{h^0} (unknown higher-order terms)

MSSM parameter space

20 (LHC) / 22 (ILC) parameters in total (no flavour violation, no CP violation)

Trilinear couplings basically undetermined at the LHC \Rightarrow fix A_b , A_{τ} to central value of allowed range A_b , $A_{\tau} = 0$ GeV for LHC \rightarrow introduced bias small

Some sectors only partly constrained \rightarrow only $\tilde{\tau}_R$, no \tilde{t} , no heavy Higgs at LHC light-Higgs loop corrections introduce dependence

 \Rightarrow free parameters in the fit (and large errors as result)

Two relevant SM parameters for later RGE running:

- α_s
- *m_t*
- ⇒ add corresponding measurement and fit as parameter

Multiple solutions

Karkruhe Institute of Technolog

[SFitter 2007]

- χ^0_3 and both charginos unobserved
- \Rightarrow Hierarchy of M_1 , M_2 and $|\mu|$ and sgn (μ) undetermined
- \Rightarrow 8 discrete solutions (not 12, as $|\mu|$ cannot be the smallest)

All solutions have equal χ^2 (ILC can later resolve this ambiguity)

	DS1	DS2	DS3	DS4	DS7 (SPS1a-like)	DS8	DS9	DS10
$\tan \beta$ M_1 M_2 μ	12.3±5.6 102.7±7.1 185.5±7.0 -362.7±7.8	$12.4{\pm}5.0\\189.5{\pm}6.2\\96.{\pm}6.4\\-364.7{\pm}6.8$	14.9 ± 9.8 107.2 ± 9.2 356.9 ± 8.7 -186.0 ± 8.5	8.9±5.9 383.2±9.1 114.2±10.7 -167.0±9.6	$\begin{array}{c} 13.8 {\pm} 7.5 \\ 105.0 {\pm} 6.9 \\ 194.7 {\pm} 7.3 \\ 353.0 {\pm} 7.7 \end{array}$	12.6±7.9 191.7±6.6 105.5±7.3 357.1±8.3	19.2±14.3 116.3±7.5 354.0±8.2 188.9±7.1	23.0±15.6 380.9±9.3 137.2±9.1 172.8±8.7
$\Delta \chi^2_{\mathrm{ILC}}$ ILC	73 ⁷ 1	χ_{1}^{\pm}	χ^{0}_{3}	x_{1}^{\pm}	0.4 ⁷ 1	χ_{1}^{\pm}	χ_{3}^{0}	χ_{1}^{\pm}

Testing Unification

Procedure:

- 5000 toy experiments at the electro-weak scale
- Use renormalization group equations (RGEs) to evolve to high scale
- Test each point of the eight-fold solution separately
- Unification determined by $\chi^2_{avg}(Q^2) = \sum_{i,j}^{N} (M_i - m_U) (C_p^{-1})_{ij} (M_j - m_U) = \min$ (*Q* unification scale m_U unified mass M_j MSSM mass parameter *C* covariance matrix of the parameters)

Gaugino masses:

Testing Unification

Procedure:

- 5000 toy experiments at the electro-weak scale
- Use renormalization group equations (RGEs) to evolve to high scale
- Test each point of the eight-fold solution separately
- Unification determined by

$$\chi^2_{avg}(Q^2) = \sum_{i,j}^{N} (M_i - m_U) (C_p^{-1})_{ij} (M_j - m_U) = \min$$

(Q unification scale m_U unified mass M_j MSSM mass parameter C covariance matrix of the parameters)

Correct solution:

Tachyonic solutions

Arisruhe Institute of Technology

Not many solutions survive:

$$\begin{aligned} \text{RGE for } & M_{\tilde{\theta}_{R}}:\\ & \frac{d}{dt}M_{\tilde{\theta}_{R}}^{2} = \frac{1}{2\pi}\frac{3}{5}\alpha_{1}\left(\text{Tr}[Ym^{2}] - 4M_{1}^{2}\right) \text{ with} \\ & \text{Tr}[Ym^{2}] = M_{H_{2}}^{2} - M_{H_{1}}^{2} \\ & + M_{\tilde{q}1_{L}}^{2} - M_{\tilde{e}_{L}}^{2} - 2M_{\tilde{u}_{R}}^{2} + M_{\tilde{d}_{R}}^{2} + M_{\tilde{e}_{R}}^{2} \\ & + M_{\tilde{q}2_{L}}^{2} - M_{\tilde{\mu}_{L}}^{2} - 2M_{\tilde{e}_{R}}^{2} + M_{\tilde{e}_{R}}^{2} + M_{\tilde{\mu}_{R}}^{2} \\ & + M_{\tilde{q}3_{L}}^{2} - M_{\tilde{\mu}_{L}}^{2} - 2M_{\tilde{e}_{R}}^{2} + M_{\tilde{e}_{R}}^{2} + M_{\tilde{\mu}_{R}}^{2} \\ & - M_{\tilde{q}3_{L}}^{2} - M_{\tilde{\tau}_{L}}^{2} - 2M_{\tilde{t}_{R}}^{2} + M_{\tilde{b}_{R}}^{2} + M_{\tilde{\tau}_{R}}^{2} \end{aligned}$$

Undetermined masses spoil evolution

- \Rightarrow Solutions turn tachyonic
- \rightarrow remove set

Tachyonic solutions

arkruhe Institute of Technology

Not many solutions survive:

$$\begin{aligned} \text{RGE for } & M_{\tilde{e}_{R}}: \\ \frac{d}{dt} M_{\tilde{e}_{R}}^{2} &= \frac{1}{2\pi} \frac{3}{5} \alpha_{1} \left(\text{Tr}[Ym^{2}] - 4M_{1}^{2} \right) \text{ with} \\ \text{Tr}[Ym^{2}] &= M_{H_{2}}^{2} - M_{H_{1}}^{2} \\ &+ M_{\tilde{q}1_{L}}^{2} - M_{\tilde{e}_{L}}^{2} - 2M_{\tilde{u}_{R}}^{2} + M_{\tilde{d}_{R}}^{2} + M_{\tilde{e}_{R}}^{2} \\ &+ M_{\tilde{q}2_{L}}^{2} - M_{\tilde{\mu}_{L}}^{2} - 2M_{\tilde{e}_{R}}^{2} + M_{\tilde{s}_{R}}^{2} + M_{\tilde{\mu}_{R}}^{2} \\ &+ M_{\tilde{q}3_{L}}^{2} - M_{\tilde{\mu}_{L}}^{2} - 2M_{\tilde{e}_{R}}^{2} + M_{\tilde{b}_{R}}^{2} + M_{\tilde{\tau}_{R}}^{2} \\ &+ M_{\tilde{q}3_{L}}^{2} - M_{\tilde{\tau}_{L}}^{2} - 2M_{\tilde{t}_{R}}^{2} + M_{\tilde{b}_{R}}^{2} + M_{\tilde{\tau}_{R}}^{2} \end{aligned}$$

Undetermined masses spoil evolution \Rightarrow Solutions turn tachyonic

 \rightarrow remove set

LHC: only 7% survive up to GUT scale ILC: adding measurements helps 38% remaining at GUT scale

LHC plus ILC

ILC data significantly improves precision

Upper row: LHC alone Lower row: LHC + ILC

Gaugino	Sfermion (1+2 gen)	Results:	
~ ⁶⁰⁰ r	~ ⁶⁰		LHC
Geogino masses 9 500	8 selectros and amuon L	<i>m</i> _{1/2}	251.9 ± 5.9
ай 2 400	light squarks L light squarks R	m_0	98.5 ± 10.5
300	300	log(Q/GeV)	$\textbf{16.23} \pm \textbf{0.29}$
200	200	Q (10 ¹⁶ GeV)	1.7 ± 1.1
100	100		
0 4 6 8 10 12 14 16 log(Q/GeV)	0 4 6 8 10 12 14 16 log(Q/GeV)		
Gaugino masses	Sfermions masses		LHC+ILC
2 300 Mi	g 500 g 500 g for and amon R g for squarks L g for squarks L	<i>m</i> _{1/2}	249.5 ± 1.8
300	ight squarks R	m_0	105.3 ± 9.1
200	200	A ₀	-164 \pm 182
100	100	log(Q/GeV)	$\textbf{16.37} \pm \textbf{0.05}$
0 4 6 8 10 12 14 16 10g(Q)GeV)	0 4 6 8 10 12 14 16 log(Q/GeV)	Q (10 ¹⁶ GeV)	$\textbf{2.33} \pm \textbf{0.28}$

Top-down vs. Bottom-up

Top-down approach

- Use high-scale MSSM with all parameters defined at the GUT scale
- Evolve parameters down to electro-weak scale
- Compare evolved parameters with experimental measurements

Sfermion (3rd generation):

 \rightarrow Huge differences between both approaches

Bottom-up (LHC+ILC)

Top-down

Top-down vs. Bottom-up

Sfermion (3rd generation):

Tachyonic data sets:

- bottom-up: considered up to scale where first entry becomes tachyonic
- top-down: non-existent by construction

Alternative solutions:

due to badly constrained parameters best-fitting solution far off possible

- bottom-up: smooth transition from true solution easy to find for fitting algorithms large blow-up only in RGE running
- top-down: solutions separated by huge valley of unlikely points very hard for fitting algorithms find sub-optimal solution close to true one instead

loa(Q/GeV)

10 12

Top-down vs. Bottom-up

Sfermion (3rd generation):

Tachyonic data sets:

- bottom-up: considered up to scale where first entry becomes tachyonic
- top-down: non-existent by construction

Alternative solutions:

due to badly constrained parameters best-fitting solution far off possible

- bottom-up: smooth transition from true solution easy to find for fitting algorithms large blow-up only in RGE running
- top-down: solutions separated by huge valley of unlikely points very hard for fitting algorithms

find sub-optimal solution close to true one instead

 \Rightarrow underestimate parameter errors

loa(Q/GeV)

10 12

Further into the future ...

S-LHC:

More statistics for \tilde{q}_R and \tilde{q}_{3L} measurements but mostly systematics-dominated already at the end of LHC \rightarrow not much improvement

Bitter	M. Rauch - Measuring Unification	

	LHC	S-LHC
$\tan \beta$	13.8 \pm 7.4	13.4 \pm 7.3
μ	353.1 ± 7.7	352.6 ± 7.1
<i>M</i> ₁	105.0 ± 6.9	104.8 ± 6.9
$M_{\tilde{a}_{2i}}$	491.4 ± 16.2	491.0 ± 15.4
$M_{\tilde{q}_R}^{\gamma_{SL}}$	509.0 ± 16.4	508.9 ± 12
% remaining	7%	7%

Further into the future ...

- CLIC: Higher center-of-mass energy (3 TeV)
 - squark sector kinematically accessible
 - first measurement of \tilde{t}_2
 - no improvement on parameters already well-measured by ILC

S-LHC+ILC

	S-LHC S-LHC+ILC		S-LHC+CLIC
$\tan \beta$	13.4 ± 7.3	11.2 ± 3.3	11.1 ± 3.2
M_1	$104.8\pm~6.9$	103.05 ± 0.7	103.1 \pm 0.6
M _{ãe}	508.9 ± 12.0	507.8 ± 10.0	507.2 \pm 5.8
$M_{\tilde{q}_{3l}}$	491.0 ± 15.4	486.6 ± 10.8	485.2 \pm 8.1
Min	$494 \ \pm \ 234$	408.8 ± 17.1	407.7 ± 12.8
A_t	-387 \pm 372	-497.4 \pm 65	-492.2 \pm 38
m_0		96.0 ± 8.6	94.1 ± 7.7
<i>m</i> _{1/2}		249.3 \pm 1.7	249.3 ± 1.66
log Q/GeV		16.4 ± 0.05	16.36 ± 0.05
% remaining	7%	43%	50%

Sfermions 1st+2nd gen

Further into the future ...

- CLIC: Higher center-of-mass energy (3 TeV)
 - squark sector kinematically accessible
 - first measurement of \tilde{t}_2
 - no improvement on parameters already well-measured by ILC

S-LHC+ILC

	S-LHC S-LHC+ILC		S-LHC+CLIC
$\tan \beta$	13.4 ± 7.3	11.2 ± 3.3	11.1 ± 3.2
M_1	$104.8\pm~6.9$	103.05 ± 0.7	103.1 \pm 0.6
M _{ãe}	508.9 ± 12.0	507.8 ± 10.0	507.2 \pm 5.8
$M_{\tilde{q}_{3l}}$	491.0 ± 15.4	486.6 ± 10.8	485.2 \pm 8.1
Min	$494 \ \pm \ 234$	408.8 ± 17.1	407.7 ± 12.8
A_t	-387 \pm 372	-497.4 \pm 65	-492.2 \pm 38
m_0		96.0 ± 8.6	94.1 ± 7.7
$m_{1/2}$		249.3 \pm 1.7	249.3 ± 1.66
log Q/GeV		16.4 ± 0.05	16.36 ± 0.05
% remaining	7%	43%	50%

Sfermions 3rd gen

S-LHC+CLIC

Conclusions

Test SUSY unification at the GUT scale

LHC

- Some MSSM parameters with large errors at low scale and 8-fold degeneracy (for SPS1a-like parameter points)
- Unification for two solutions (sgn µ)
- Determine m_{1/2} and unification scale to 2%

ILC

- Measures all kinematically accessible masses with high precision ⇒ Significant improvement in parameter determination
- Degenerate solutions disappear
- S-LHC and CLIC
 - only marginal improvement at S-LHC
 - Precise measurements of parameters at CLIC (mostly 0.5% to 1%)
 - Limitation → Theory error
 - Improvement over LHC+ILC not dramatic
 - ← Precise masses of light particles and well-known edges perform pretty well for *e.g.* squark masses

LHC measurements

	type of	nominal	stat.	LES	JES	theo.
	measurement	value		err	or	
m _h		108.7	0.01	0.25		2.0
mt		171.20	0.01		1.0	
$m_{\tilde{l}_L} - m_{\chi_1^0}$		102.38	2.3	0.1		1.1
$m_{\tilde{g}} - m_{\chi_4^0}$		511.38	2.3		6.0	6.1
$m_{\tilde{q}_R} - m_{\chi_1^0}$		446.39	10.0		4.3	5.5
$m_{\tilde{g}} - m_{\tilde{b}_1}$		89.01	1.5		1.0	8.0
$m_{\tilde{g}} - m_{\tilde{b}_2}$		62.93	2.5		0.7	8.2
m_{\parallel}^{\max} :	three-particle edge($\chi_2^0, \tilde{l}_R, \chi_1^0$)	80.852	0.042	0.08		1.2
m_{llq}^{\max} :	three-particle edge($ ilde{q}_L,\chi^0_2,\chi^0_1$)	449.08	1.4		4.3	5.1
m_{lq}^{low} :	three-particle edge($\tilde{q}_L, \chi_2^0, \tilde{l}_R$)	326.32	1.3		3.0	5.2
$m_{ll}^{\max}(\chi_4^0)$:	three-particle edge($\chi_4^0, \tilde{l}_L, \chi_1^0$)	277.36	3.3	0.3		2.0
$m_{\tau \tau}^{\max}$:	three-particle edge($\chi_2^0, \tilde{\tau}_1, \chi_1^0$)	83.21	5.0		0.8	1.0
m_{lq}^{high} :	four-particle edge($\tilde{q}_L, \chi_2^0, \tilde{l}_R, \chi_1^0$)	390.18	1.4		3.8	5.0
m_{llq}^{thres} :	threshold($ ilde{q}_L, \chi^0_2, ilde{l}_R, \chi^0_1$)	216.00	2.3		2.0	3.3
$m_{llb}^{\rm thres}$:	threshold($\tilde{b}_1, \chi_2^0, \tilde{l}_R, \chi_1^0$)	198.41	5.1		1.8	3.1

ILC measurements

particle	$m_{ m SPS1a}$ value \pm stat.err. \pm theo.er	r.
$ \frac{h}{H} \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\chi_{1\pm2}^{+}$ $\tilde{\mu}_{2}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

