Beam tests of the new scintillator HCAL modules at DESY

- > results from DESY e⁺ testbeam
 - MIP calibration
 - time measurement
- > plans for CERN π testbeam

Katja Krüger (DESY)

LCWS2012 International Workshop on Future Linear Colliders Arlington, Texas, 22-26 October 2012

Scintillator HCAL

HCAL Base Units (HBUs)

- > 144 scintillator tiles
- 4 chips reading out 36 channels each
- > two trigger modes:
 - external trigger
 - autotrigger: OR of 36 channels above threshold, possibility of trigger validation
- measurement of size (ADC) and time (TDC) of a signal
- > 4 new HBUs: equipped with tiles, electronics for all channels adjusted in lab

DESY testbeam

- > positron beam of 1-6 GeV, a few kHz rate at 2-3 GeV, nearly continuous
- > goals
 - cross check gain equalization: positrons (or electrons) at these energies passing through a tile deposit nearly exactly the same energy as a Minimum lonizing Particle (MIP)
 - test trigger verification
 - test external time reference

Calibration in DESY testbeam

- verify channel gain equalization at an energy scale relevant for physics by measuring a MIP signal in all tiles
- setting trigger threshold for MIP measurement is a compromise between noise rate and minimizing influence on MIP signal

DESY Testbeam: Trigger Validation

- chips have buffer depth of 16 events
 - sufficient for ILC operation
 - limiting for testbeam operation
- trigger modes of Spiroc2b chip:
 - external trigger
 - autotrigger: OR of 36 channels
- trigger validation for autotrigger:
 - if no external reference signal is given (within a certain time window), the current buffer will be overwritten by the next event
 - use signal from trigger scintillator as external reference signal
 - large suppression of non-beam related background, essential for testbeam operation

without validation ADC Fintries 15984 Mean 479 RMS 122.1 Integral 1.475e+04 200 400 600 800 1000 ADC

Distribution of MIP most probable values

- > all MIP spectra are fitted with Landau ⊗ Gauss
- most probable value (before pedestal subtraction) consistent between channels

Efficiency

- determine trigger efficiency for a MIP as function of threshold from shape of MIP signals
- → for thresholds below 0.5 MIP efficiencies of ~95% or better are reached
- aim to run with threshold below 0.5 MIP

Threshold setting

- > 1 global trigger threshold per chip, necessary conditions:
 - uniform gain (gain equalization with single pixel spectra and preamplifier capacitances → talk by O. Hartbrich)
 - uniform light yield (adjusted SiPM voltages)
- verify that position of 0.5 MIP is similar for all channels

fulfilled for all four HBUs

Time measurement

- measure time in auto-trigger mode relative to bunch clock
- time measurement is implemented with TDC ramps (low power consumption)
- dual TDC ramp in switched by a multiplexer to reduce dead time due to ramp reset

External time reference

- > for testbeam running, the internal clock is not correlated to the beam
- > no direct input of external time reference foreseen in electronics
- no information about absolute time of a hit
- use capability of time measurement of the channels, replace 1 tile signal by signal of trigger scintillator
- time difference between channel with MIP signal and channel with reference T0 shows sharp peak:
 - width ~10 ticks, 1 tick ~ 1.5 ns (no corrections applied)
 - offset due to electronics

Electromagnetic shower

> tested operation with signals in all 4 chips with electromagnetic shower

Preparation for CERN testbeam

- will operate 1 layer with 4 HBUs in 50-180 GeV π beam
- assembly done at DESY
- first operation tests successful

Goals for Testbeam at CERN

- System test of prototype with 4 HBUs
- Study time structure of hadron showers
 - differences in the time development of showers between tGeant4 physics lists
 - HP contains better modeling of low energy neutrons
 - differences especially in the shower tail

Summary & Outlook

- tests & calibrations of single HBUs done in DESY positron beam:
 - MIP measurements
 - time reference
 - electromagnetic shower
- first tests with 4 HBUs
- plans for CERN hadron beam:
 - demonstrate operation of engineering prototype layer
 - measure time structure of hadron showers
 - simulation studies started
- next steps
 - slab with 6 HBUs
 - small elm. stack
 - large 1m³ prototype

Backup

Noise Rate

- determine noise rate with threshold at 0.5 MIP:
 - dependence of rate on trigger threshold (in DAC) already measured in Lab

need MIP measurements to determine threshold we will use

