

Software Common Task Group Report

Akiya Miyamoto
ILC PAC
POSTECH
3 November 2009

- Introduction
- Common data samples
- Common software tools
- The GRID
- Summary

Charge and Members

Charge

- Coordinate tools and data bases common to LOI groups and code compatibility for simulation studies.
- Work on any common software issues for ILC detector studies

Members

- Re-organized after IDAG validation
- Members:
 - Akiya Miyamoto(Convener, KEK, ILD)
 - Norman Graf(Deputy Convener, SLAC, SiD)
 - Frank Gaede(DESY, ILD)
 - Tony Johnson (SLAC, SiD)

Software issues in RD's work plan until 2012

- 4. Develop a realistic simulation model of the baseline design, including faults and limitations.
- 7. Simulate and analyze benchmark reactions, which can be updated
- 8. Simulate and analyze reactions at 1 TeV, including realistic higher energy backgrounds demonstrating the detector performance.
 - 8&9: Based on the work of the Physics and Software group. The reaction will be chosen to show the strength of ILC compared to other facilities

Brief summary of activities

LOI era:

 Contacts to make MC data samples for benchmark processes common to all LOI groups.

After LOI submission (TILC09)

- Meetings: 2 WebEx , face-to-face meetings at ALCPG09, E-mail communications
- Discussing common samples, tools, and plans until 2012.
- Set up a web page for our activities
 http://www.linearcollider.org/wiki/doku.php?id=swctwg:swctwg_home
- LC software workshop (May 28-29) @ CERN

- Introduction
- Common data samples
- Common software tools
- The GRID
- Summary

Common Data Samples: LOI era

Sample productions

- Mostly by SLAC:
 - SM samples of 2 ~8 fermions + nγ for collisions of ee/eγ/γγ
 - O(3000) processes for 250GeV [250fb⁻¹]/ 500GeV[500fb⁻¹] in general; Lower statistics if σ is large; O(3)TB in data size.
- Some signal samples were also produced at DESY/KEK ...
- Using common StdHep format and shared by ftp & GRID
- Useful to understand differences
 - Note that samples used by SiD and ILD were not completely exact.
 - SiD sim/re. pre-mixed samples (80%/30% pol.)
 - ILD sim./rec. un-mixed samples (100% pol.) and mix in anal.
 - → No significant problem is recognized, but details will matter.

CDS: Generator Issues

- Whizard was used for all processes.
- Requests for improvements for the next round
 - inclusions of all top decay modes
 - tau pol. in processes other than tau-pair process
 - Whizard may not be optimal for Bhabha, gammagamma, SUSY with long cascade, ...
 - Should we change the Pythia fragmentation from its default to the LEP-tuned values?
 - Better process ID assignments and logging
- Proposing to continue with StdHep, as no viable alternative exits (HepMC is ascii only)

CDS: StdHep Production

- Major production will be done after
 - 1. Determination of machine parameters (for luminosity spectrum, energy spreads)
 - 2. Physics Common Task group's decision on energies and processes.
 - 3. Generator updates

For 2 & 3, meetings with Physics CTG will be necessary.

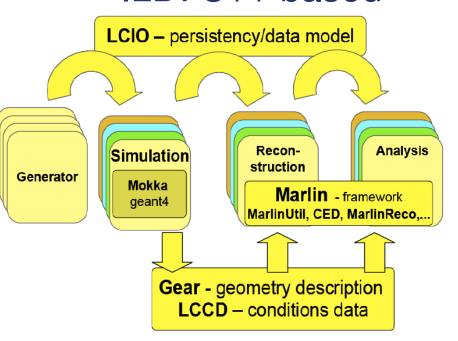
 Load sharing of production works needs to be considered.

CDS: Beam Parameters

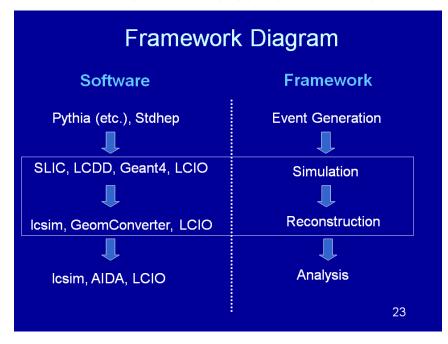
- SB2009 : Urgent
 - We need beam parameters for studies on
 - Physics performance
 - Reweight LOI results using new luminosity spectrum or re-generate samples and re-analysis
 - Backgrounds
 - Pair background → vertex detector, BCAL/LCAL
 - Preliminary studies of pair background at 500 GeV are in progress using GunieaPig and CAIN.
 - Both ILD and SiD are eager to know a concrete parameter sets
 - Initial Energy spread at 500 GeV
 - Parameters at different energy (250 GeV, 350 GeV? ...)
 - Common samples will be produced using GuniaPig as soon as the parameter set is available

Milestones

- Samples under the 'SB2009' beam condition needs as soon as possible for timely feedback to GDE
- LCWS2010, Mar. 2010
 - list of benchmarks ready (from Physics CTG)
 - Machine parameter fixed
- ~ June 2010
 - Updates of generator complete and start production of generator files.
 - Tools for generators should be ready by then
- By the end of 2010:
 - Generator files are available for simulations.
- Simulations for DBD
 - It will take ~ 1 year.
 - Expected to start by mid. 2011 or early 2012(Not solid yet)
 - Common tools for Sim/Rec should be updated by then



- Introduction
- Common data samples
- Common software tools
- The GRID
- Summary



ILC software tools

ILD: C++ based

SiD: Java based

- Commonality in
 - Detector Simulation (Geant4)
 - Event reconstruction packages; Vertexing, PFA, ...

LCIO

LCIO provides

- A common event data model and a common persistent format

LCIO has been a bases of

- Successful merger of GLD + LDC → ILD
- Successful use of cross-concept software packages, eg. LCFIVertexing, PFA, ...
- SiD Java-based reconstruction were further processed using ILD's C++ based MarlinReco

LCIO2.0

- User requests and LOI lessons initiated discussions. Works towards LCIO2.0 are in progress.
- We will continue using LCIO

Software update plan

ILD

- Merge jsf goodies and Marlin
- Improve simulation, geometry system, reconstructions
- Develop a test system and new GRID production system

SiD

- Improve detector models for simulation, better support for dual readout calorimeter, improve geometry tools
- Full reconstruction with new geometry components
- Use standard Geant4 physics list
- Improve for batch run system

Foreseen many active field in software development Software CTG encourages tool sharing when possible

Organization

- by CLIC software community to discuss software issues common to ILC
- 27 participants from CLIC, ILD, SiD and 4th

Topics is selected CLIC community's point of view

- Persistency: StdHep/HepMC, LCIO
- data model: LCIOV2
- Java ←→ C++ interfacing
- Geometry tools: Gear, GDML, TGeo, Visualization
- Common PFA
- SW-Packaging, Virtualization, common Framework

http://indico.cern.ch/conferenceDisplay.py?confld=58717

- Introduction
- Common data samples
- Common software tools
- The GRID
- Summary

The GRID

- In LOI era,
 - SID extensively used both the LCG and OSG grids (RAL, fermiGrid, DESY, in2p3, ...), in addition to SLAC Isf batch system
 - ILD used the LCG grids (DESY, in2p3, KEK, ...)
- Number of issues with GRID job submission, monitoring and file transfers. Not a simple job, but it worked.
- Very LHC-centric, but GRID is responsible for successful processing of many tens of millions of events of a few hundreds TB data
- For the moment, we are not sure about the availability of computing resources in the next study phase.
 CPUs, network bandwidth, ... depends on LHC

Summary

- Common data samples and code sharing backed up by LCIO were successful in LOI era.
- We wish to keep this direction in DBD era
- Major software works in coming years includes
 - New data samples for new benchmark processes
 - Updates of detector simulators and reconstruction tools
- Software Common Task Groups will continue to work
 - on common data samples
 - on common software tools and standards