

Test results of an scintillator ecal layer with embedded electronics

Technological prototype of ScEcal

Tomohisa Ogawa , Tohru Takeshita for ScECAL - CALICE-Asia ECFA/DESY May/2013

Technological prototype

- From physics prototype to the real calorimeter
- Technological prototype sensor layer with

embedded electronics

physics prototype
 TestBeam2009@FNAL

Tomohisa Ogawa & 1.1

scintillator ECAL Technological prototype: scecal

sensor = scintillator strip
and photo-sensor (MPPC)

scintillator: 2 x 5 x 45 mm³

MPPC: 1 x 1 mm2 1600pix. direct coupling without any glue

embedded electronics =
 EBU : ECAL Base Unit

ASIC=SPIROC2b

Bias supply amp. ADC/ TDC Readout I/F calibration via LED

actual ScEcal technological prototype

- 4 SPIROCs on a EBU control $144 = 4 \times 36$ channels.
- board is developed by DESY ~ AHCAL
- detector interface board (DIF)

LED calibration and gain monitoring system

a EBU

an LED & its hole to a scintillator

 EBU has LEDs for each channel except on chips or connector

ADCData {ChipID==129&&ChannelNumber==24&&Trigger==13}

Photo electron peaks are measured by

LED lights

gain monitored

ADC distribution to measure #photone

results of LED gain monitoring system

- (#good channels)/(144-32) = 50%.
- There is no channel on ASIC132 measured correctly.

Tomohisa Ogawa & T.T

ECFA LC2013

Beam test at DESY Oct-2012

Tomonisa Ogawa & T.

response to MIPS are measured at DEST st, 26

Response to 3GeV electron events

 75% channels have succeeded to have good MIP distribution

ADC histogram

: no signal or large noise

ADC/MIP and #photo-electrons/MIP

- 108 channels out of total 144 ch. (75%).
- RMS/Means = 19.3%
 (This is the similar to the case of FNAL physics prototype).
- mean = 6.5 is near the requirement,
 we need to increase gains for lower response channels (2-5 p.e.)
 - seven photo-electron is required for the real calorimeter
 to remove thermal noise and keep response for bhabha events

Shower events

Putting absorber plates in front of EBU, we measure the spread of shower.

longitudinal shower profile comparing with the result of physics prototype

- EBU + scintillator layer

10

- with physics prototype in 2009

of layers

at Shinshu, retested the LED mode

When we use LED mode, for many channels on chip131 and 132 (at DESY only chip 132), A signal loss sometimes happen.
Once after it happens, Signal loss is kept in the whole of the cycle

 changing a trigger timing-delay value to become later, they work well.(lower picture)

- the reasons due to LED frequency dependence
 - A. the MPPC bias voltage might decrease when the LED frequency is too high.
 - B. the LED bias voltage might drop
 - C. the SPIROC channel-wise input DACs might be too slow.

ADCData (ChipID=132&&ChannelNumber=20&&Trigger=0)

because of signal loss

and loss

and loss

because of signal loss

because of signal loss

and loss

and

at low frequency LED mode

at Shinshu Bad channels at beam were investigated

For a few unseparated channels against MIP signal, we rise MPPC's bias voltage. they work well.

due to lower gains

 we could not do pre-experiment well to measure break down voltage of MPPCs.
 due to this, we set the wrong DAC value to the Labview.

we took out two lanes of scintillators and removed the reflector in front of MPPC, then they work well.

construction fail

when we fixed a scintillator layer
 by hands, a scintillator layer cought a reflector film.

Tomohisa Ogawa & T.T ECFA LC2013

LED calibration results

source test results 5 from break down Sr90

- bias voltage $\Delta V = +2.5$ from break down

LED calibration result97ch/108ch ~90% success

still lower biasing at ____

MIP calibration result with Sr90RI source : 125/144~87%

Tomohisa Ogawa & T.T ECFA LC2013

Recovered at Shinshu 2013

result with LED and Sr90 RI source (not include some dead channels)

d-value between photon peaks

gains are reasonable

LED: BT to Shinshu

Nch: 56 to 130

mean: 20.4 to 19.2

ADC/MIP conversion factor

chip132 control area

MIP: BT to Shinshu

Nch: 108 to 130

mean: 6.5 to 5.3

may be due to source Sr90

Tomohisa Ogawa & T.T

Summary and Plan

- We have tested a technological prototype layer
 144 channel using electron beam at DESY Oct 2012.
- We have measured the MIP peaks in the energy deposit at around 6.5 p.e. for 75% of channels.

- From TB, we have leant much, and investigated some problems we have solved some of those problems at shinshu university
 - we could measure d-value on LED mode with 97 channels in 108 equipped LED channels. -> 90%
 - we could measure MPV on TestBeam mode with 125 channels
 - out of 144 channels with Sr90 RI source. -> 87% and the result is MPV of around 5.3 p.e.

plan and outlook

- Next test beam is scheduled at beginning of July, we will test the hybrid ECAL with SiECAL group.
- The purpose is
 - synchronized between Sc layers (not trivial)

Two layers (x and y type) ScECAL prototype

- the power pulsing mode
- combined with Si–W–ECAL prototype (Hybrid ECAL) (if possible)

Tomohisa Ogawa & T.T ECFA LC2013