

Higgs at CMS with 1, 10, 30 fb⁻¹

LCWS - ILC

2007 INTERNATIONAL LINEAR COLLIDER WORKSHOP 30 May – 3 June 2007 @ DESY

S. Bolognesi – INFN Torino

☐ Higgs width increases with its mass

Roughly speaking, the difficulty of Higgs detection increases with its mass so at low lumi (1,10,30 fb⁻¹) you will see low masses...

... except for very low masses (M_H<130 GeV) where the Higgs decay channels are a big experimental challenge !!

 \square Higgs couples to heaviest available fermion (b, τ) ...

... until **WW**, **ZZ** thresholds open.

 $H \rightarrow \gamma \gamma$ the favourite (one loop) decay in a very unlucky region

■ Due to large QCD backgrounds

(quite) no hope to trigger/extract fully hadronic final state

e.g.
$$\sigma(H \rightarrow bb) \approx 20 \text{ pb}$$

 $\sigma(bb) \approx 500 \text{ } \mu b$

 look for final state with lepton (or γ) or associated production (very low xsec)

Main Higgs channels

 H→ZZ*→4I
 H→WW*→IvIv
 early discovery channels
 measure Higgs properties (mass, width, xsec) already with 30 fb⁻¹!!

- H→ττ in VBF

■ H→WW*→jjlv / lvlv in VBF significance > 5(3) with 30 fb⁻¹

but good comprehension of detector needed (jet, MET, τ in lept. and hadr. decay)

- H→γγ very difficult analysis with still quite unpredictable background
- ttH→ttbb at least 60 fb⁻¹ (many jets also with low p_T (<30 GeV) → bad reso/eff)
- other channels (mainly associated production) can help EXCLUDING Higgs (e.g. WH→WWW*→Wlvlv)

 $| \bigcap (\alpha \vee \mathsf{RP}) |$

	Channel	O(O X BK)	studied M _H
	H→ ZZ*→4I	5-100 fb	130-500 GeV
	$H \rightarrow WW^* \rightarrow I_V I_V$	0.5-2.5 pb	120-200 GeV
L	L	200-900 fb	120-250 GeV
Ę	L	50-250 fb	120-200 GeV
ĺ	$H \rightarrow \tau \tau$	50-150 fb	115-145 GeV
	$H \rightarrow \gamma \gamma$	50-100 fb	115-150 GeV

□ Analysis focusing on

- improuvement of the reconstruction
- backgr. and syst. from data
- correct statistical treatment of results

$H \rightarrow ZZ(*) \rightarrow 4I$

- \square very sensible for M(H) = 130 to 500 (except 150-190 where WW open)
 - early discovery: statistical observation involving a small number of events
 - compatibility with SM expectation: preserving the phase space for more involved characterization measuring xsec, M_H, width (spin, CP ...)
- usual cuts
 - isolated lepton from primary vertex with high p_T (trigger)
 - one on-shell Z greater than 50% for M(H)>115 greater than 85% for M(H)>150

- 4μ: golden channel
- 2e 2µ: highest BR but lower reso/effic on electrons
- 4e: most difficult (important to recover low p_T electrons)

2e2μ analysis

☐ backgrounds:

ZZ(*)/γ*, tt, Zbb

(Zcc found to be negligible)

- □ reconstruction
- likelihood approach to discriminate real / fake e+/-
- ECAL-Tracker matching, shower shape
- e⁺e⁻ with highest likelihood selected
- internal bremsstrahlung recovery:
- 40%-10% events with γ (p_T>5 GeV) radiation from lepton (1/3 from μ)
- recovered γ with $\Delta R(\gamma, I) < 0.3$

before

2e2μ results

 ΔB stat increases with m_H from 2% (m_H 120) to 30% (m_H 600) because of events decreasing in sidebands w.r.t. signal window

 Δ B theory from PDF, QCD scale, NLO ZZ xsec → **0.5%** - **4.5%**

Luminosity VS m_H (same shape of 4μ and 4e)

- m_H **150** high BR and low backgrounds
- m_H 170 low BR at the H→WW turn on
- m_H **200** strong enhancement of BR for m_H > 2m_Z
- m_H 250 decreasing of signal while ZZ background remains high
- m_H **250-350** decreasing of ZZ background
- m_H > 350 decreasing of signal xsec and BR (due to H→tt)

4μ analysis

MC generated

Reconstructed M(4µ) after selection

Half of the events used to **optimize cuts with GARCON*** which allows to obtain smooth $M(4\mu)$ dependent cuts:

three main critical cuts uncorrelated:

- muon isolation
- p_T of the second lowest p_T muon
- M(4 μ) window ($\approx 2\sigma$ where $\sigma \approx \Gamma_H$ + reso)

other half of the events used to compute significance

^{*} Genetic Algorithm for Rectangular Cuts OptimizatioN allows to check effectively a large set of cuts which, in a straightforward approach, would take an astronomical amount of time

4µ background systematics

Ratio H \rightarrow 4 μ to Z \rightarrow 2 μ (\approx 1 fb⁻¹)

Normalization from sidebands

• new process NLO gg→ZZ ≈ (20±8)% LO xsec (different initial state so variations of QCD scale do not necessary give a feel for its relative importance)

4μ results

- overestimatimation of a local discovery in searching for a localized new phenomenon in a wide phase space
- check the consistency with expected properties:
 - xsec and variables not used in the analysis
 - $M(4\mu)$ shape consistency with sign+back hypothesis
- decrease a priori the open phase space:
 - M_H prior probability could be forced to be consistent with the fit to precision EW measurements
 - use the early data for a first hint and then discard them from analysis

4e analysis

After trigger and preselection

□ Optimization of low p_T e^{+/-} reco

□ cuts to reject fakes are separately optimized for different Bremsstr.
e+/- classes

After full analysis selection

4e: systematics & reults

Use Z→e+ewith one golden
e+/-, second e+/used to estimate
uncertainties
(best resolution on
the Jacobian peak:

 $p_T \approx m_7/2$, low $|\eta|$)

- ☐ Tracker "radiography" measuring the amount of e+/- Bremsstralhung
 - (2% material budget with 10 fb⁻¹)

$H \rightarrow WW(*) \rightarrow I_{V}I_{V}$ [M(H)=150-180]

- No narrow peak → high S/B needed
 - good background shape control necessary (normalization from data)
 - mass independent cuts
 - signal: all leptonic W decays (0.5 2.3 pb with a peak at M_H≈160 GeV)
 - backgrounds:

tt, tWb (≈ **90 pb**) g

WW, WZ, ZZ (≈ **15 pb**)

Z Drell-Yan not considered but checked that after selection should be < 2% of the total background

vv analysis

\Box central jet veto ($|\eta|$ <2.5, E_T >20 GeV)

- no calibration (energy is not needed)
- discrimination between real and fake jets (PU, UE, FSR, ISR, detector noise)

$$\alpha = \frac{\sum p_T(tracks)}{E_T(jet)} \quad \begin{array}{l} \alpha > 0.2 \text{ for jets with} \\ 15 < E_T < 20 \text{ GeV} \end{array}$$

- □ high MET (> 50 GeV)
 - **lee, eμ, μμ** reconstruction and selection
 - intermediate m(II)
 - little $\phi(II)$ in the transverse plane

vv results

- □ ∆B from data defining free signal region varying the analysis cuts
 - ΔB (tt) ≈ 16% dominated by jet energy scale
 - ΔB (WW) ≈ 17% dominated by statistic
- ΔB (WZ) ≈ 20% dominated by the (values for 5 fb⁻¹)
- □ tWb, ggWW small fraction of B:
 - normalization region difficult to find
 - syst uncertainties from MC

theoretical error dominates (20%, 30%)

qqH with $H \rightarrow WW \rightarrow Ivjj$ [M(H) = 120-250]

- + BR \approx 5.5 BR(IvIv) \rightarrow xsec \approx 0.02 0.8 pb
- + you can reconstruct the Higgs mass
- big amount of background → strong cuts → good knowledge of physics needed (measure backgrounds from data) :
 - tt + jets (≈ 840 pb)
 - **Wtb** (≈ 100 pb)
 - **VV** + **jets** (≈ 100 pb)
 - **V** + jets (≈ 700 pb)
- ✓ multiple jets xsec will be precisely measured from data
- ✓ many systematics about jets will be understood and resolved from data

qqH with $H \rightarrow \tau \tau \rightarrow lep + jet$ [M(H)< 150]

- □ backgrounds: Z/γ^* + jets (irreducible),
 - W→Iv + jets
 tt→blvblv
 with one jet misidentified as τ-jet
- ☐ complex signal kinematics:
 - forward jets with high rapidity gap (no color exchange)
 - MC calibration
 - central jet veto applied (with cut on α parameter)
 - high p_T lepton (e or μ)
 - MET: resolution 20% after correction
 - τ-jet identification
 - trigger on little (ΔR) isolated jet
 - offline impurity 2.7% $\eta_{j3}^* = \eta_{j3} (\eta_{j1} + \eta_{j1})$ efficiency 30% (mainly due to p_T , η cuts and request of isolation)
 - energy resolution 11.3%

H→ττ results

- \square M($\tau\tau$) computed using collinear approximation of visible part of τ decay products and neutrinos
 - M(ττ) overestimated 5 GeV
 because of over-corrected MET
 - M(ττ) resolution of 9.1%

☐ Significance exceeds 3σ at 30 fb⁻¹

■ number of events computed from data using the $M(\tau\tau)$ fit (envisaged to do it in a region unaffected from signal)

• error (σ_B) only from the fit:

- 10k **toy MC data distributions** following the fit (with the number of events equiv. to 30 fb⁻¹)
- · each sample refitted with free scale factors for the three independent fit
- uncertainty = spread of the number of background events in the 10k samples

Inclusive H→γγ [M(H)=115-150]

- ☐ inclusive signal production but with very low BR≈0.002
- \square pp $\rightarrow \gamma \gamma$ (irreducible) $pp \rightarrow jets / \gamma + jets (reducible)$ with one jet misidentified as γ

Drell-Yan e+e-

very big background and very detector dependent + not well known QCD physics (big k factor in γ +jets events)

Great deal of uncertainty in the benchmark estimate of luminosity ...

... this will not be a systematic error on real data since the background will be measured from data (thanks to the big sidebands signal free)

- Analysis based on NN trained
 - on sidebands for backgr.

(1% systematic error on the background interpolation under the Higgs peak)

on MC for signal

Conclusions

- ☐ These are inverse fbs of (w.)u.d. !!
 - detector systematics: jets, γ , MET (e and μ from Z \rightarrow II)
 - multiple jets background xsec: V+jets, VV+jets, tt

Back-up slides

S. Bolognesi – INFN Torino

Higgs properties measurement

- ullet The mass can be measured with a precision between 0.1 % and 3.7 %
- The intrinsic width can only be measured when the Higgs boson is heavier than 190 GeV, with precisions around 25%, the experimental resolution dominating for lower masses
- The production cross-section can be determined with a precision around 20% for masses in the range 130 GeV-150 GeV and above 190 GeV

μ experimental systematics

• μ reco efficiency by counting # of Z in single μ HLT sample with $p_T > 20$

$$\begin{split} N_{Z(TRK)} &= \epsilon_{HLT} \cdot \epsilon_{TRK} \cdot N_Z, \\ N_{Z(SAM)} &= \epsilon_{HLT} \cdot \epsilon_{SAM} \cdot N_Z, \\ N_{Z(GMR)} &= \epsilon_{HLT} \cdot \epsilon_{GMR} \cdot N_Z \\ \epsilon_{GMR} &= (N_{Z(GMR)})^2 / (N_{Z(TRK)} N_{Z(SAM)}), \\ \epsilon_{TRK} &= N_{Z(GMR)} / N_{Z(SAM)}, \\ \epsilon_{SAM} &= N_{Z(GMR)} / N_{Z(TRK)}. \end{split}$$

- μ p_T scale and resolution from J/ ψ and Z peak
- trigger on single μ → efficiency ≈ 100% without sizeable uncertainty

4e: electron reco

□ Optimization of low p_T e^{+/-} reco:

- supercluster (cluster of cluster)
- dedicated tracking with GSF using energy loss modeling

to recover

- Bremsstr. and initial showering in Tracker

- cuts to reject fakes are separately optimized for different Bremsstr. e+/- classes
- supercluster size
- φ and E matching between tracker and ECAL

$$f_{brem} = (p_{in} - p_{out})/p_{in}$$

S. Bolognesi (INFN To) – ILC/LCWS 2007: Higes sestion

(back-up) 3

Fraction of the super-cluster energy found inside the **3 by 3 array of crystals** centred around the highest energy crystal.

The shower shape variable R_9 very useful in discriminating between photons and jets. Because it looks in a small 3 × 3 crystal area inside the super-cluster it can provide information about narrow jets

Signal photons sometimes have low values of R_9 due to conversions, but usually R_9 provides additional isolation information about the supercluster.

NOT explicitly considered but taken into account to choose cuts:

- electrons from D/B decay in QCD jets
- fake primary electrons due to early γ conversions
- π^{o} π^{\pm} overlap

(e.g. Z+jets)

qq + H→|vjj : jets (1)

- Strong E_T cuts needed for keeping an acceptable resolution (jets with E_T <30 GeV very difficult to calibrate)
 - for eliminating fake jets (most of PU jets with E_T <30 GeV)
- \square Strong E_T cuts affect efficiency:
 - Parton-jet matching efficiency
 - signal forward quarks
 - signal quarks from W decay

Efficiency of requiring at least 4 jets

$$-$$
 signal $-$ W + 4 jets

$qq + H \rightarrow lvjj : jets (2)$

☐ tag jets misidentified with jets from FRS, ISR, PU, UE, detector noise ...
In the signal this increases the chance of misidentification central jets from W

□ jets from W:

- best possible resolution of 15 GeV !!
- other central jets (E_T >20 GeV in 60% of events) often (20%) with higher E_T than jets from W
- MC calibration from QCD jet samples
- Iterative cone algorithm (∆R=0.6)
- Fast Simulation for some backgrounds

M(W→jj) using parton-jet matching

(back-up) 6

S. Bolognesi (INFN To) - ILC/LCWS 2007: Higgs session

yy analysis

- \square γ reconstruction and preselection
- **ECAL crystal resolution** from W→e_V calibration after 10fb⁻¹: 0.3% barrel, 1.0% endcaps
 - γ reconstruction efficiency ≈ 100% in the ECAL acceptance
- vertex refitted from high p_T tracks → 5 mm resolution in 81% of the cases (needed to have right γ direction \rightarrow precise m_H)
- NN to combine the isolation variables (Tracker, ECAL, HCAL)
- ☐ Analysis performed with NN:
 - NN input: E_T/M(γγ) signal has higher E_T

 $\Delta \eta (\gamma \gamma)$ backgr. have high mass only if high $\Delta \eta$

 NN_{isol} output against jets

longitudinal momentum

trained separately on 6 categories:

- · signal events with better mass 3 steps of R₉ resolution have higher R₉
 - jets and π^0 have lower \mathring{R}_{o}

barrel / endcaps

- · signal events in barrel have better resolution

Significance computation

- Counting experiment approach (S_{cP})
 probability from a **Poisson distribution** with mean N_B to observe $N \ge N_B + N_S$ converted in equivalent number of Gaussian standard deviations
- Log-likelihood ratio significance (S_{cL}) likelihood ratio of probability of observing data in the signal+background hypothesis to the probability of observing the data in background only hypothesis