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Motivation

The improvement in 70 energy resolution from mass-constrained fitting of

70 — 4~ decay depends crucially on the determination of the opening
angle, 112, between the two photons: m? = 4E; E sin? (¢12/2). This is a
function of the reconstructed position vectors of the two photons in the
ECAL, and so depends on the measurement of (¢, cosf) for each photon.
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Electromagnetic Shower Fitting

@ Electromagnetic showers are well-behaved and governed by well
understood stochastic processes.

@ Sophisticated parametrizations of both shower shapes and fluctuations
and their correlations are used in “fast shower simulation”.

e In particular, Grindhammer and Peters (hep-ex/0001020) have a
well-tuned model which reproduces full GEANT. This is used in
“GFLASH".

@ Plan: Use these parametrizations to improve the reconstruction of
photon 4-vectors by fitting the observed cell energies to the model.

@ Will exploit the very narrow core of EM showers near the start of the
shower to improve position resolution. (I demonstrated this in an old
study with Imm? cells.)
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Grindhammer-Peters Model

Describes the spatial energy distribution of electromagnetic showers in
terms of the energy deposition in a 3-d volume element in the scaled
longitudinal variable, t (in Xo), scaled radial variable, r (in Ry), and the
azimuthal variable, ¢.

dE(t,r,¢) = E fi(t) fa(r) £(¢) dt dr d¢

The average longitudinal distribution uses the usual gamma distribution:
fi(tia, ) = B (8 t)* Texp (=5 t)/T(a)

where the shape parameter, «, and the scaling parameter, (3, are related to
the longitudinal center of gravity, < t >, and the shower maximum depth,
T,by<t>=a/fand T =(a—1)/5.
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Average Radial Profile vs Shower Depth

GP use two component ansatz with R¢, (R7) being the median radial
extent of the core (tail) and p giving the relative weight of the core.

f(r) = pfe(r)+ A —p)fr(r)
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The shower depth in units of the shower maximum, 7 =t/ T is used to
parameterize the radial profile parameters, namely Rc(7), R7(7), p(7).
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Longitudinal Shower Fit

Example: 5 GeV photon, ILD00. Maximum likelihood fit to the measured
energies per pseudo-layer for the 3 free parameters using a suitable choice
of fit parameters: log E, log (o — 1), log T.

Use GSL simplex implementation for minimimization. For now, neglect angle of
incidence issues; the B parameter accommodates this anyway.
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Longitudinal Shower Fit Remarks
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These fits work remarkably well with typically 98% of fits leading to
sensible answers even with all 3 parameters floating. Currently using
default EM sampling fractions. The fitted energies are competitive (and
highly correlated) with the measured energy. Can imagine allowing for
t-dependent weights on a shower-by-shower basis and there may be some
room to improve the energy resolution.
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Using the Radial Profile Expectations

Simulating the radial profile fluctuations vs depth needs knowledge of the
longitudinal fluctuations for the particular shower. So, the longitudinal fit
is used to calculate 7; = t/T; where T; is the fitted shower max.

So far, | took the evaluated R¢, Rt, p values for each pseudo-layer of an
individual shower assuming cosf = 0, and then used the median R of that radial
profile at that fitted shower depth to calculate weight functions for position
estimation.

The default position estimator one usually uses for photon momentum
reconstruction is the shower center-of-gravity

Feoc = (1L Ei) /(X1 Ei)

We investigated riyy = (Z,N:1 E,-W,-F,’)/(Z,’-V:1 Eiw;) with w; = R™. We
also investigated using different values of « for determining ¢ and cosf,
denoting the parameter, a4 and oy.
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First Results

For 5 GeV photons found resolution optimized for ay = 1.0 and ap = 0.5
improved from 0.50 to 0.42 mrad.

and angular resolution
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One way of quantifying the essential "2-d" nature of photon cluster

reconstruction is to measure the distribution of separation angle between the

reconstructed photon and the generator photon in space. This can be described

by a Rayleigh distribution if the resolution contribution from both components is

similar - which is a fair approximation.
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Bias in Photon cos 6 Reconstruction

Example: 5 GeV with oy = 0.5. Residuals biased by up to ~ 0.3 x 1073.
Better resolution in cos @ for high | cos ).
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Should fit with a suitable odd function of cosf. Chose to fit using a Chebyshev
polynomial (1st kind). With the coefficients of T; and Ts as the only free
parameters can obtain reasonable fits.

In this case the fit function is basically T; cosf + Ts cos 56.
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Energy Dependent Fit of cosf Bias

Combined Energy-Dependent Fit to Photon Polar Angle Bias (0, = 0.5)
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Bias in Photon ¢ Reconstruction wrt Octant Center

Example: 20 GeV with a4 = 1.0. Residuals biased by up to ~ 0.3 mrad
too.
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Snapshot of current improvements: 20 GeV photon
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Snapshot of current improvements: 20 GeV photon

Before (hPhiResidual) and after (hpPhiResidual) correcting ¢ bias.
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Snapshot of current improvements: 1 GeV photon

After correcting cos 6 bias.
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Conclusions/Summary/Open Issues

@ Shower fitting has potential to improve calorimeter measurements.

o First attempts at longitudinal fits appear very promising, and indicate
that it is feasible to measure the 3 main longitudinal shower
parameters.

o Longitudinal weighting of position estimates shows improvement over
shower CoG.

@ Need to take care of systematics in ¢ and cosf (which are there also
for CoG ...) - in progress, and re-visit a optimization.

@ Not sure how easy it will be to really adapt the method seamlessly to
all incidence angles.

o Full 3-d fitting of all cells to a shower model looks to be worth
pursuing for photons - particularly with regard to reducing finite
cell-size type systematics.
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Position Resolution Algorithms

© v01-09 PandoraPFANew - uses unweighted cluster centroid in first
pseudo-layer (oops ...).

@ Shower center-of-gravity (was the default in MarlinReco /
PandoraPFA).

© Longitudinal weighting using shower fit (this talk)

| have a version of PfoCreationAlgorithm::CreateNeutralPfos() which

implements 1 and 2 above and an energy-weighted version of 1. (CoG is
the obvious default ...).
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Chebyshev Polynomials of the First Kind

A particular orthogonal polynomial

Ti(x) = x
T5(x) = 4x3 —3x
Ts(x) = 16x° — 20x> + 5x

In fits using just the T; and Ts contributions, the T1-Tg correlation
coefficient is small leading to robust fits.
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-
Rayleigh Distribution

Can describe the magnitude of a vector, 7, whose two components, x and
y are Gaussianly distributed, uncorrelated and with the same variance.

p(rio) = (r/o®) exp(—r?/(20%))
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