Analysis of 4-jet mode in ZHH

'08 11/17 Y. Takubo (Tohoku U.) for GLD-ZHH analysis group

Introduction

Motivation of ZHH analysis

- ZHH has the information of Higgs self-coupling.
- The analysis method will be different, depending on Higgs mass.
 - > H \rightarrow bb for M_H<160GeV
 - > H \rightarrow WW for M_H>160GeV
- Any case should be considered before results from LHC.

ZHH study for some cases of Higgs mass is started.

Analysis menu

ZHH analysis was started to cover wide Higgs-mass region.

- Light Higgs : M_H =120GeV, E_{CM} =500GeV \leftarrow Today's topic
- Heavy Higgs : M_H =170GeV, E_{CM} =750GeV~1TeV

ZHH at M_H=120GeV

According to Z-decay types, there are 3 analysis modes.

- HHZ \rightarrow HHqq (6-jets)
 - > 135.2 ab

> The most attractive mode due to the largest cross-section.

• HHZ \rightarrow HHvv (4-jets) \leftarrow My talk

> 38.8 ab

> Easy to analyze and not bad cross-section.

• HHZ \rightarrow HHl⁺l⁻ (4-jets + 2leptons)

≻ 19.8 ab

> The smallest cross-section.

HHvv was investigated in my study.

Signal v.s. B.G.

Many B.G. processes contaminate into HHvv analysis.

Simulation study is performed, including B.G.

Simulation study

Simulation procedure

- Event generation
 - > MadGraph or Physsim
 - > Hadronization is done by Pythia
- Detector simulation
 - > Quick-sim for GLD

- Analysis
 - > ROOT based analysis

Reconstruction of Higgs mass was performed.

Event display of a $HH\nu_{\mu}\nu_{\mu}$ event

Reconstruction of Higgs mass

Higgs mass reconstruction for HHvv events

- $M_H = 120$ GeV, $E_{CM} = 500$ GeV
- All events are reconstructed as 4-jet events.
- Two jet-pairs are selected by minimizing the χ^2 function.

Reconstructed M_H distribution

Higgs mass is reconstructed with B.G..

- There are many B.G. events in the signal region.
- Powerful B.G. rejection is necessary.

Selection cut

- χ^2 cut
 - Higgs mass cut
 - Missing mass cut
- Angular cut
 - Missing P_T cut
 - Lepton track cut
- b-tag cut

$ZZ \rightarrow bbbb rejection$

- ZZ \rightarrow bbbb can be rejected by selection of χ^2 , M_H, M_{miss}, and cos θ .
 - > $\chi^2 < 20$, 95 < M_H < 125 GeV, 90 < M_{miss} < 170 GeV, and $|\cos\theta| < 0.9$
- tt, ZH, and tbtb still contaminate in the signal region.
 - ≻ tt: 26,521, ZH: 447, tbtb: 37

ZH rejection (Missing P_T cut)

Missing P_T was used to reject ZH-B.G..

- ZH-B.G. has a peak at low $^{\text{miss}}P_T$ region.
- $^{miss}P_T > 50 GeV$ was selected.

> tt: 17,591, ZH: 137, tbtb: 25

tt-rejection (Lepton track cut)

of isolated lepton tracks are investigated to reject tt-B.G..

- The lepton track from W will be rejected.
- The total energy within 20 deg. around the lepton tracks were used to select the isolated lepton tracks.
- $N_{lep} = 0$ was selected.

tt rejection (b-tag selection)

of b-tagged jets are investigated to reject tt-B.G..

- b-tag requirement: 2 tracks with 3σ from IP
- HHvv and tt-B.G. have their peak at $N_{b-tag} = 4$ and 2, respectively.
- tt-B.G. can be suppressed by choosing $N_{b-tag} = 4$.

Reduction summary

The reduction rate at each cut was summarized for 2 ab⁻¹.

	ΗΗ νν	ZZ→bbbb	tt	ZH	tbtb
• No cut	: 77.6	18100	1167200	124200	2154
• $\chi^2 < 20$: 43.7	12169	364921	83065	468
• $95 \text{GeV} < M_{\text{H1,2}} < 125 \text{GeV}$: 29.5	387	70557	8570	82
• $90 \text{GeV} < M_{\text{miss}} < 170 \text{GeV}$: 26.2	127	32570	696	45
• $ \cos \theta_{1,2} < 0.9$: 23.0	34.4	26521	447	37
• missing $P_T > 50 \text{GeV}$: 18.4	3.6	17591	137	25
• Nlepton=0	: 17.8	3.6	6708	37.3	9.7
• $N_{b-tag} = 4$: 7.3	1.8	65	0	2.4

- All the B.G. processes are rejected effectively by the selection cut.
- Remaining tt-events are still large (65 events).
 Additional selection cut should be studied.

Remaining tt-events

The Higgs mass distribution and signal significance was checked after all the selection cuts.

Remaining events

- HHvv : 7.3
- $ZZ \rightarrow bbbb : 1.8$
- tt : 65.0
- ZH : 0
- tbtb : 2.4

N Ean from confident about

Summary

• ZHH is studied to investigate ILC performance for some Higgs mass case.

- HHvv is analyzed for light Higgs case in this study.
- The signal significance of 0.9 was obtained.

> ZZ, tt, ZH, and tbtb can be rejected effectively by the selection cuts.

- > Remaining tt-events are still large (65 events).
- Additional selection cut should be investigated.