

An ILD vertex detector with CMOS sensors

status report

J.Baudot, for the IPHC group baudot@in2p3.fr

Orsay 2011 May 23

- Detector specifications
- x CMOS sensor architecture
- x Perspective toward the DBD
- x Beyond the DBD
- x Summary
- x Back-up slides

The CMOS sensor-based VXD

Inner layer – internal side

- X Optimized for resolution
- x 16 x 16 μ m²
- X Q encoding: binary
- x $t_{Integration} \sim 40 \ \mu s$
- ✗ Sensitive area ~ 2 cm²

Outer layer

- x Optimized for low power
- x 35 x 35 μ m²
- x Q encoding: 4-bits
- $\textbf{\textit{x}} \quad t_{\text{Integration}} \sim \! 100 \; \mu \text{s}$
- ✗ Sensitive area ~ 4 cm²

Inner layer – external side

- x Optimized for r.o. speed
- x 16 x 64 μm²
- x Q encoding: binary
- x $t_{Integration} \sim 10 \ \mu s$
- ✗ Sensitive area ~ 2 cm²

layer	ra dius (mm)	length (mm)	# ladders	# sensors*	#.10 ⁶ pixels	t _{int} (µs)	σ _{s.p.} (μm)
1	16/18	125	14	168	66 + 16	40 / 10	< 3 / ~5
2	37/39	250	26	312	2x112	100	< 4
3	58/60	250	40	480	2x173	100	< 4
total			80	960	652		

^{*} Numbers corresponding to current CMOS technology (0.35 μm) prototypes

Architecture concepts

CMOS sensors: high granularity & low power

- x In-pixel: pre-amplification pedestal suppression
- periphery: digitization + zero-suppression
- x Readout strategy = rolling-shutter (column //)
 - → single row active at a time → save power
 - \rightarrow $t_{integration} = t_{read-out}$
- Active only during train (2 to 4 ms)
 - → Power pulsing with duty cycle 1/100 to 1/50
- x Collaboration: IPHC, IRFU

Ladders:

- x Sandwich: sensor+cable / stiffener / cable+sensor
 - → Increased stiffness → low mass spacer (foam)
 - → Allows to combine sensors with different spec.
- x Air cooling assumed
- **x** PLUME collaboration:
 - → DESY, IPHC, Uni. Bristol, Uni. Oxford

CMOS sensor prototypes

- Test points for:
 - Pixels out (analogue)
 - > Discriminators
 - > Zero suppression
 - Data transmission
 - Row sequencer
 - Width: ~350 µm
- 1152 column-level discriminators
 - offset compensated high gain preamplifier followed by latch
 - Zero suppression logic
 - Reference Voltages
 Buffering for 1152
 discriminators
 - I/O Pads
 Power supply Pads
 Circuit control Pads
 LVDS Tx & Rx

MIMOSA 26:

CMOS 0.35 µm OPTO technology

Chip size: 13.7 x 21.5 mm2

- Pixel array: 576 x 1152, pitch: 18.4 μm
- Active area: ~10.6 x 21.2 mm²
- In each pixel:
 - Amplification
 - CDS (Correlated Double Sampling)

■ Current Ref.

Bias DACs

- Readout controller
- JTAG controller
- Memory management
 - Memory IP blocks
- PLL, 8b/10b optional

- x EUDET Final Telescope chip
- \mathbf{x} Fabricated in 2009 & 2010 with standard (few Ω.cm) & high resistivity (400 Ω.cm)
- x Yield 75% for "perfect" sensors, 90% for usable
- x Thinned down to 50 μm

CMOS sensor prototypes

MIMOSA 26

- x Readout time (pixel clock 80 MHz) \sim 100 μ s
 - \rightarrow > 10⁶ part/cm²/s
- Power dissipated ~250 mW/cm²

MIMOSA 22 High Resistivity (400 Ω.cm), fab 2010

CMOS sensor prototypes

MIMOSA 26

- x Readout time (pixel clock 80 MHz) \sim 100 μ s
 - \rightarrow > 10⁶ part/cm²/s
- x Power dissipated ~250 mW/cm²

• Spatial resolution $(\sigma_{s,p})$

- x Depends on: pitch, epi. layer, SNR, q-encoding
- x Extrapolation from previous measurements

Pitch (µm)	20.7	18.4	16
Nb of bits	1	1	1
Epi. layer	high R.	high R.	high R.
σ _{s.p.} (μm)	measured 3.5	measured 3.1	extrapolated 2.7

Pitch (µm)	20	20	30	35	40
Nb of bits	12	4	12	4	12
Epi. layer	low R.	low R.	low R.	low R. high R.	
σ _{s.p.} (μm)	measured	re- processe d 1.7	measured	extrapolated < 4	measured 3

MIMOSA 22 High Resistivity (400 Ω.cm), fab 2010

DBD perspective: sensors

Inner layer sensors

- x MIMOSA 30
- x Two-sided readout
 - \rightarrow 256 rows with pitch 16x16 µm²
 - · Spatial resolution < 3 μm
 - → 64 rows with pitch 16x64 µm²
 - · Spatial resolution ~5 μm
- x 128 columns with binary output
 - → with pixel clock @ 100 MHz
 - → Readout time < 50 µs

Outer layers sensor

- x MIMOSA 31
- x Pitch 35x35 μm² & 4-bits output
 - → Spatial resolution < 4 μm
- x 48 columns over 64 rows
 - → Readout time ≤ 100 µs

For both sensors

- x CMOS 0.35 μm technology
- x fabrication Q4 2011 (if funding available)
- x Beam test before mid-2012
 - → Translation into 0.18µm techno. underway

DBD perspective: ladders

PLUME ladder 2010 design

- x Focus on <u>functionality</u> (8 Mpixels, 9 W cont. readout 100 μs)
- Material budget ~ 0.6% X0 (= 2x target value)
 - → low-mass cable very wide & uses copper traces
 - → Stiffener SiC foam with 8% density
- x Lab tests
 - → Air cooling @ 2 m/s
 - → Positioning precision + stability (ongoing)
 - → Crude power pulsing test (MIMOSA 26 not optimized)
- Beam test: November 2011
 - → Impact on resolution from air cooling & power pulsing

Thermal measurement

DBD perspective: ladders

PLUME ladder 2010 design

- x Focus on <u>functionality</u> (8 Mpixels, 9 W cont. readout 100 μs)
- **x** Material budget $\sim 0.6\% \times 10^{-2}$ X0 (= 2x target value)
 - → low-mass cable very wide & uses copper traces
 - → Stiffener SiC foam with 8% density
- x Lab tests
 - → Air cooling @ 2 m/s
 - → Positioning precision + stability (ongoing)
 - → Crude power pulsing test (MIMOSA 26 not optimized)
- **x** Beam test: November 2011
 - → Impact on resolution from air cooling & power pulsing

Thermal measurement

PLUME ladder 2011design

- x Optimized for <u>material budget</u>
 - → Final figure depends on cable mass & stiffener (design finalized Spring'10) assuming 13 µm aluminum traces & 4% SiC foam
 - → Transversal cross-section ~ 0.29 % of X0
 - → Average over the ladder surface (weight/sensitive area) ~ 0.47 % of X0
- New low-mass cable fabrication Summer 2011
 - → First ladder ~ fall 2011, Beam test summer 2012

Extrapolation with:

- same concept
- thinner sensor
- thinner cable
- → average ~0.3 % X0

DBD perspective: system 1/3

DBD perspective: system 2/3

Powering

- x Estimation done:
 - → Overall dissipation during train (power on) ~ 900 W (0.35 µm techno) > 700 W (0.18 µm techno.)
 - \rightarrow Duty cycle 1/50 to 1/100 \rightarrow 20 to 30 W in average
- **x** Delivery strategy to be optimized:
 - → Cable size for 700W seems OK / material budget (< 10 g/ cm on pipe)
 - → BUT potential gain with DC-DC converters and/or regulators and/or capacitor
 - → Location of converters and patch panel not fixed
 - → Several scenario to be identified for DBD
- Sensor-level power delivery studies ongoing @ IPHC
 - → Timeline beyond DBD

Data flow

- **x** Estimation done:
 - \rightarrow Driven by the first layer with an average rate of 5 part/cm²/bunchX x 10 (security factor x fluctuation)
 - → During train: O(1)Tbps data throughput within 1 ms
- Optimization with serializer & opto-converter
 - → Work in collaboration with SMU-Dallas (ATLAS)
 - → Will not converge for DBD

DBD perspective: system 3/3

Faraday cage & cryostat

- x Current model extrapolated from SLD
- No recent work...
 - → Option to share with first FTD stations?
- x Potential tests with PLUME ladders but not scheduled yet

Mechanical support

- x Current Beryllium support model extrapolated from SLD
- No changes expected within 12 months

Cooling

- x Air cooling "seems" sufficient for 20 to 30 W but which air speed?
- Study for 1 ladder will be completed within PLUME
- x Simulation for whole detector possible @ DESY
- x No work on the air delivery pipe yet

- **1**s 0.5 → 1 TeV
 - **x** Effects: beam bckd x2, physics $x\sqrt{s}$, longer decay distances
 - **x** Impacts:
 - → Sensors with shorter integration time
 - → Geometry may be revisited

2D CMOS 0.18 μm technology upgrade

- x Lower power or higher speed (20 to 30%)
- Also: higher data reduction, smaller pitch, higher radiation tolerance, smaller size peripheral circuitry, stitching
- x First prototype to submit in Q4 2011
 - → <u>4-5 years program</u> to reach "final" sensors

3D integration technology

- x Optimizes CMOS techno. for each functionality / tier
- x Very high expectations: O(10) μm pitch with O(1) μs readout or 50 ns time-stamping
- x First prototypes fabricated within consortium coordinated by FNAL
 - → Long term program

2D CMOS 0.18 μm technology upgrade

- x Lower power or higher speed (20 to 30%)
- Also: higher data reduction, smaller pitch, higher radiation tolerance, smaller size peripheral circuitry, stitching
- x First prototype to submit in Q4 2011
 - → <u>4-5 years program</u> to reach "final" sensors

3D integration technology

- x Optimizes CMOS techno. for each functionality / tier
- $ilde{\textbf{x}}$ Very high expectations: O(10) μm pitch with O(1) μs readout or 50 ns time-stamping
- x First prototypes fabricated within consortium coordinated by FNAL
 - → Long term program

Sensing Analog pre-ampl. Analog. — Digital Digit. • output

Ladders

- x Further decrease mat. budget
 - → Stitching, embedded sensors
- x single-sided ladders
- x cooling/support alternatives

2D CMOS 0.18 µm technology upgrade

- x Lower power or higher speed (20 to 30%)
- Also: higher data reduction, smaller pitch, higher radiation tolerance, smaller size peripheral circuitry, stitching
- x First prototype to submit in Q4 2011
 - → <u>4-5 years program</u> to reach "final" sensors

3D integration technology

- x Optimizes CMOS techno. for each functionality / tier
- × Very high expectations: O(10) μm pitch with O(1) μs readout or 10 ns time-stamping
- x First prototypes fabricated within consortium coordinated by FNAL
 - → Long term program

Sensing Analog pre-ampi. Analog. — Digital Digit. + output

Ladders

- x Further decrease mat. Budget
 - → Stitching, embedded sensors
- x single-sided ladders
- x cooling/support alternatives

Algorithm studies

- x Validated on theam within AIDA project & PLUME collab.
- **x** Benefits of 2-sided ladders
 - → Alignment, track matching

Summary

The CMOS sensor VXD concept

x 2 sensor flavors

- \rightarrow inner layers: $\sigma_{s.p.} < 3 \mu m$ for 40 /10 μs integration
- \rightarrow outer layer: $\sigma_{s.p.}$ < 4 μ m for 100 μ s integration
- x Based on well established MIMOSA 26 architecture

Toward the DBD

- x Prototypes for the 2 sensor flavors fabricated & tested (beam)
- X Double-sided ladder with material budget of
 0.6% X0 in 2011 ≥ 0.3 to 0.45 % X0 in 2012 fabricated & tested (beam)
- x Detailed needs estimated for services

Beyond the DBD

- x Technology migration for enhanced performances (2D short-term, 3D long-term)
 - → Mitigate integration difficulty (material budget, power)
 - → Answer 1 TeV challenges
- x Development of services
- Benefits expected from synergy with other projects: STAR, CBM, ALICE, AIDA
 → sensor stitching, readout speed, material budget, integration techniques

Additional slides

- x Computing the spatial resolution
- x DEPFET status
- Pixelated SiT
- Power pulsing
- Power & low mass cables
- x Parameter space for VXD

Defining the spatial resolution

From the residual resolution

- x Fit with a single gaussian
- \mathbf{x} Spatial resolution = single gaussian std. deviation

Analog sensor case: MIMOSA 18, pitch 10 μm

Binary sensor case: MIMOSA 26, pitch 18.4 μm

The DEPFET-based VXD

The Belle II VXD as ILD demonstrator

- x 2 single-sided ladders with DEPFET APS ladders
- x L1: radius 14 mm, 90x12.5 mm2, 8 ladders, 50x50μm2, 1600x250 pix/ladder
- x L2: radius 22 mm, 126x12.5 mm2, 12 ladders, 50x75μm2, 1600x250 pix/ladder
- x Thin (50μm) sensitive area, ladder concept like in ILD
 - → 0.19 % X0 in fiducial volume
- Frame rate 100kHz (L1) and 50kHz(L2), continuous read-out
- x Line rate: 12.5 MHz, "rolling shutter" mode
- Power dissipation per ladder (20 ladders)
 - → Sensor ~1 W + switcher ~1 W
 - → DCD+DHP chips ~ 8 W
- x Radiation damage: a few Mrad/year
- No requirements in forward region relaxed end-of-ladder (EOL) specs for material and services
- no power pulsing possible, but aggressive (liquid) cooling on EOL allowed
- x first Belle II data expected 2014

From L.Andricek, 2010

the pixelated SiT option

Power pulsing sensor

Pulsing strategy

- x Activity period ~ 2 to 4 ms over the 200 ms train
 - → Estimated duty cycle range: 1/50 to 1/100
- **x** For stability reasons, not all element switchable
 - → Test started for the analog part
 - → To be done for the digital circuitry

Assuming: 0.18µm techno. & 1.8 V voltage & continuous operation		sensor		2-sided ladder			whole detector			
		switch.	not-swi.	total	switch.	not-swi.	total	switch.	not-swi.	total
inner layer	power (W)	1,575	0,025	1,6	18,9	0,3	19,2	688 W	12 W	700 W
	current (A)	0,875	0,014	0,89	10,5	0,17	10,67	OOO W	IZ VV	700 W
outer Layers	power (W)	0,490	0,010	0,5	5,88	0,12	6	382 A	7 A	390 A
	current (A)	0,272	0,006	0,28	3,27	0,07	3,33	362 A	/ A	390 A

Average power (integrating pulsing) 20 to 30 W

→ Air cooling probably good enough

Power pulsing & low mass cables

Wire bonds

- ✗ Average current through powering wires ~10 mA
 - → Small residual force in B=4T but vibrations possible
- x Monolithic sensors are easy to handle
 - → Possibility to embed in polyimide & connect through metallization
 - → IMEC+CMST & CERN projects

connection Metal traces kapton sensor profile view

Top view 1st trial of a MIMOSA embedded by IMEC

Lorentz force on low mass cable

- x Many "small" transverse traces
 - → Residual force could reach few g ≈ cable mass!
- X Double-sided structure could be used to counter-balance the effect
 - → Cable design with reverse current path on each side
- X Switching sensors with some delay and not simultaneously → reduce current
 - → Require specific sensor functionalities

Parameter space for a VXD

