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The CMOS sensor-based VXDThe CMOS sensor-based VXD

layer radius (mm) length (mm) # ladders # sensors*

1 16/18 125 14 168 66 + 16 40 / 10 < 3 / ~5
2 37/39 250 26 312 2x112 100 < 4
3 58/60 250 40 480 2x173 100 < 4

total 80 960 652

#.106 pixels tint (µs) σs.p.(µm)

* Numbers corresponding to current CMOS technology (0.35 µm) prototypes

Inner layer – external sideInner layer – external side
✗ Optimized for r.o. speed
✗ 16 x 64 µm2 
✗ Q encoding: binary
✗ tIntegration ~10 µs

✗ Sensitive area ~ 2 cm2 
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Architecture conceptsArchitecture concepts

CMOS sensors: high granularity & low powerCMOS sensors: high granularity & low power

✗ In-pixel: pre-amplifcation pedestal suppression

✗ periphery: digitization + zero-suppression

✗ Readout strategy = rolling-shutter (column //)

➔ single row active at a time → save power

➔  tintegration = tread-out 

✗ Active only during train (2 to 4 ms)

➔ Power pulsing with duty cycle 1/100 to 1/50

✗ Collaboration: IPHC, IRFU
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✗ Sandwich: sensor+cable / stifener / cable+sensor

➔ Increased stifness → low mass spacer (foam)

➔ Allows to combine sensors with diferent spec.

✗ Air cooling assumed
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➔ DESY, IPHC, Uni. Bristol, Uni. Oxford
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CMOS sensor prototypesCMOS sensor prototypes

✗ EUDET Final Telescope chip

✗ Fabricated in 2009 & 2010 with standard (few Ω.cm) & high resistivity (400 Ω.cm)

✗ Yield 75% for “perfect” sensors, 90% for usable

✗ Thinned down to 50 µm
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CMOS sensor prototypesCMOS sensor prototypes

MIMOSA 26MIMOSA 26

✗ Readout time (pixel clock 80 MHz) ~ 100 µs

➔ > 106 part/cm2/s

✗ Power dissipated ~250 mW/cm2  
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DBD perspective: sensorsDBD perspective: sensors

Inner layer sensorsInner layer sensors

✗ MIMOSA 30

✗   Two-sided readout Two-sided readout 

➔ 256 rows with pitch 16x16 µm2

• Spatial resolution < 3 µm

➔ 64 rows with pitch 16x64 µm2  

• Spatial resolution ~5  µm

✗ 128 columns with binary output

➔  with pixel clock @ 100 MHz

➔ Readout time < 50 µs
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DBD perspective: laddersDBD perspective: ladders

PLUME ladder 2010 designPLUME ladder 2010 design

✗ Focus on functionality (8 Mpixels, 9 W cont. readout 100 µs)

✗ Material budget ~ 0.6% X0 (= 2x target value)

➔ low-mass cable very wide & uses copper traces

➔ Stifener SiC foam with 8% density

✗ Lab tests

➔ Air cooling @ 2 m/s

➔ Positioning precision + stability (ongoing)

➔ Crude power pulsing test (MIMOSA 26 not optimized)

✗ Beam test : November 2011

➔ Impact on resolution from air cooling & power pulsing
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DBD perspective: laddersDBD perspective: ladders

PLUME ladder 2011designPLUME ladder 2011design

✗ Optimized for material budget

➔ Final fgure depends on cable mass & stifener (design fnalized Spring'10)
assuming 13 µm aluminum traces & 4% SiC foam

➔ Transversal cross-section ~ 0.29 % of XTransversal cross-section ~ 0.29 % of X00  

➔ Average over the ladder surface (weight/sensitive area) ~ 0.47 % of X0

✗ New low-mass cable fabrication Summer 2011

➔ First ladder ~ fall 2011, Beam test summer 2012
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DBD perspective: system 1/3DBD perspective: system 1/3
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DBD perspective: system 2/3DBD perspective: system 2/3

PoweringPowering

✗ Estimation done:

➔ Overall dissipation during train (power on) ~ 900 W (0.35 µm techno) ↘ 700 W (0.18 µm techno.)

➔ Duty cycle 1/50 to 1/100 → 20 to 30 W in average20 to 30 W in average

✗ Delivery strategy to be optimized:

➔ Cable size for 700W seems OK / material budget (< 10 g/ cm on pipe)

➔ BUT potential gain with DC-DC converters and/or regulators and/or capacitor

➔ Location of converters and patch panel not fxed

➔ Several scenario to be identifed for DBD

✗ Sensor-level power delivery studies ongoing @ IPHC

➔ Timeline beyond DBD
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Data fowData fow

✗ Estimation done:

➔ Driven by the frst layer with an average rate of 5 part/cm2/bunchX  x 10 (security factor x fuctuation) 

➔ During train: OO(1)Tbps data throughput within 1 ms(1)Tbps data throughput within 1 ms 

✗ Optimization with serializer & opto-converter

➔ Work in collaboration with SMU-Dallas (ATLAS)

➔ Will not converge for DBD
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DBD perspective: system 3/3DBD perspective: system 3/3

CoolingCooling

✗ Air cooling “seems” sufcient for 20 to 30 W but which air speed? 

✗ Study for 1 ladder will be completed within PLUME

✗ Simulation for whole detector possible @ DESY

✗ No work on the air delivery pipe yet
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Beyond the DBDBeyond the DBD

√√ s 0.5 s 0.5 →→  1 TeV1 TeV

✗ Efects: beam bckd x2, physics x√s, longer decay distances

✗ Impacts:

➔ Sensors with shorter integration time

➔ Geometry may be revisited
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➔ 4-5 years program to reach “fnal” sensors
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Beyond the DBDBeyond the DBD
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SummarySummary

The CMOS sensor VXD conceptThe CMOS sensor VXD concept

✗ 2 sensor favors2 sensor favors

➔ inner layers: σs.p. < 3µm for 40 /10 µs integration

➔ outer layer: σs.p. < 4µm for 100 µs integration 

✗ Based on well established MIMOSA 26 architecture

Toward the DBDToward the DBD

✗ Prototypes for the 2 sensor favors fabricated & testedfabricated & tested (beam)

✗ Double-sided ladder with material budget of
0.6% X0 in 2011 ↘ 0.3 to 0.45 % X0 in 2012 fabricated & tested0.3 to 0.45 % X0 in 2012 fabricated & tested (beam)

✗ Detailed needs estimated for services

Beyond the DBDBeyond the DBD

✗ Technology migration for enhanced performances (2D short-term, 3D long-term)

➔ Mitigate integration difculty (material budget, power)

➔ Answer 1 TeV challenges

✗ Development of services

✗ Benefts expected from synergy with other projects: STAR, CBM, ALICE, AIDA 
→ sensor stitching, readout speed, material budget, integration techniques
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Additional slidesAdditional slides

✗ Computing the spatial resolution

✗ DEPFET status

✗ Pixelated SiT

✗ Power pulsing

✗ Power & low mass cables

✗ Parameter space for VXD
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Defning the spatial resolutionDefning the spatial resolution

From the residual resolutionFrom the residual resolution

✗ Fit with a single gaussian

✗ Spatial resolution = single gaussian std. deviation
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Analog sensor case:
MIMOSA 18, pitch 10 µm

Analog sensor case:
MIMOSA 18, pitch 10 µm

Binary sensor case:
MIMOSA 26, pitch 18.4 µm

Binary sensor case:
MIMOSA 26, pitch 18.4 µm
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The DEPFET-based VXDThe DEPFET-based VXD

The Belle II VXD as ILD demonstratorThe Belle II VXD as ILD demonstrator

✗ 2 single-sided ladders with DEPFET APS ladders

✗  L1: radius 14 mm, 90x12.5 mm2, 8 ladders, 50x50µm2, 
1600x250 pix/ladder

✗  L2: radius 22 mm, 126x12.5 mm2, 12 ladders, 50x75µm2, 
1600x250 pix/ladder

✗  Thin (50µm) sensitive area, ladder concept like in ILD

➔ 0.19 % X0 in fducial volume
✗  Frame rate 100kHz (L1) and 50kHz(L2), continuous read-out

✗  Line rate: 12.5 MHz, “rolling shutter” mode

✗ Power dissipation per ladder (20 ladders)

➔ Sensor ~1 W + switcher ~1 W
➔ DCD+DHP chips ~ 8 W

✗  Radiation damage: a few Mrad/year

✗  No requirements in forward region relaxed end-of-ladder 
(EOL) specs for material and services

✗ no power pulsing possible, but aggressive (liquid) cooling on 
EOL allowed

✗ frst Belle II data expected 2014
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From L.Andricek, 2010From L.Andricek, 2010
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the pixelated SiT optionthe pixelated SiT option
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Power pulsing sensorPower pulsing sensor

Pulsing strategyPulsing strategy

✗ Activity period ~ 2 to 4 ms over the 200 ms train

➔ Estimated duty cycle range: 1/50 to 1/100 

✗ For stability reasons, not all element switchable

➔ Test started for the analog part

➔ To be done for the digital circuitry

Pulsing strategyPulsing strategy

✗ Activity period ~ 2 to 4 ms over the 200 ms train

➔ Estimated duty cycle range: 1/50 to 1/100 

✗ For stability reasons, not all element switchable

➔ Test started for the analog part

➔ To be done for the digital circuitry

Average power (integrating pulsing) 20 to 30 W

→ Air cooling probably good enough

Average power (integrating pulsing) 20 to 30 W

→ Air cooling probably good enough

sensor 2-sided ladder whole detector

switch. total switch. total switch. total

power (W) 1,575 0,025 1,6 18,9 0,3 19,2
688 W 12 W 700 W

current (A) 0,875 0,014 0,89 10,5 0,17 10,67

power (W) 0,490 0,010 0,5 5,88 0,12 6
382 A 7 A 390 A

current (A) 0,272 0,006 0,28 3,27 0,07 3,33

Assuming: 0.18µm techno.
& 1.8 V vol tage
& continuous operation not-swi. not-swi. not-swi.

inner
layer

outer
Layers
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Power pulsing & low mass cablesPower pulsing & low mass cables

Wire bondsWire bonds

✗ Average current through powering wires ~10 mA 

➔ Small residual force in B=4T but vibrations possible

✗ Monolithic sensors are easy to handle

➔ Possibility to embed in polyimide & connect through 
metallization

➔ IMEC+CMST & CERN projects
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➔ Small residual force in B=4T but vibrations possible

✗ Monolithic sensors are easy to handle

➔ Possibility to embed in polyimide & connect through 
metallization
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Lorentz force on low mass cableLorentz force on low mass cable

✗ Many “small” transverse traces

➔ Residual force could reach few g ≈ cable mass!

✗ Double-sided structure could be used to 
counter-balance the efect

➔ Cable design with reverse current path on each side

✗ Switching sensors with some delay 
and not simultaneously → reduce current

➔ Require specifc sensor functionalities

Lorentz force on low mass cableLorentz force on low mass cable

✗ Many “small” transverse traces

➔ Residual force could reach few g ≈ cable mass!

✗ Double-sided structure could be used to 
counter-balance the efect

➔ Cable design with reverse current path on each side

✗ Switching sensors with some delay 
and not simultaneously → reduce current

➔ Require specifc sensor functionalities

kapton sensor

Metal tracesconnection

profle view

~
1

 c
m

Top view 
1st trial of a MIMOSA embedded by IMEC
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Parameter space for a VXDParameter space for a VXD

M
APS developm
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