# Options for Dual-Readout Calorimetry in the 4<sup>th</sup> Concept



**DESY**, June 1, 2007

- \* (Light-Emitting) Active Media
- \* (Photon-Sensing) Detectors
- \* (Time-Domain) Signal Processing





# How does all this come together?

ITC-IRST



- Dual Readout (DR) Calorimetry
  - measure separately EM fraction of hadronic showers and slow neutrons
- 4<sup>th</sup> Conceptual Detector
  - include DR calorimetry in spectrometer of original design (dual solenoid)
- FACTOR (Trieste-Udine-Messina)
  - INFN R&D project on technology for DR calorimetry (SiPM, fibers, etc)

ITC<sup>(\*)</sup>-IRST (Trento) public research and technology inst. since 1994 working on the development and production of semiconductor devices

(\*) Now Fondazione Bruno Kessler

### ITC-IRST (Trento)

ITC (Now Fondazione Bruno Kessler) – IRST is a public research and technology Institute, working since 1994 on the development and on the production od semiconductor devices for research and applications. It has a fully equipped Microfabrication Laboratory in which silicon devices are built.

- Ion Implanter
- Furnaces
- Litho (Mask Aligner )
- Dry&Wet Etching
- Sputtering &Evaporator
- On line inspection
- Dicing

#### Main activities:

- TCAD simulation, CAD design
- Fabrication
- Certification

### **FACTOR:** INFN R&D Project

• 3 Teams: Messina (5), Trieste (7), Udine (4) (Walter Bonvicini et al.)

#### Tasks:

- Studies and development of crystals,
   Cerenkov radiators,
   neutron sensitive scintillators
- Design (in collaboration with IRST) of SiPM, with properties optimized for DR calorimetry, and their evaluation
- Evaluation and design of "pulse shape" sensitive fast electronics
- Schedule: 2006-2007 Studies, R&D, prototypes
   2008 Full scale tests

# **IRST Technology**

- C. Piemonte "A new Silicon Photomultiplier structure for blue light detection" NIM A568 (2006) 224
- C.Piemonte et al. "Characterization of the first prototypes of Silicon Photomultiplier fabricated at ITC-IRST" IEEE Trans. Nucl. Science 54 (2007) 1



- 1) Substrate: p-type epitaxial
- 2) Very thin n+ layer
- 3) Quenching resistance made of doped polysilicon
- 4) Anti-reflective coating optimized for λ~420nm

# IRST detector structure

Basic SiPM geometry:

- 25x25 cells

- cell size: 40x40µm2





IRST new design Delivery of prototypes in 2007



## SiPM signal shape

The signal presents 2 components:

1. Avalanche current reproduced at the output by parasitic capacitor

2. slow component due to the recharge

of the diode capacitance (Recovery time ~70ns)



# SiPM response to LED

Pulse charge spectrum from low-intensity light flashs (blue LED)



# Tiles used for Ts/Ud tests

- Dubna scintillator + keyhole/double-spiral groove + 3M superreflector
- Kuraray fiber achieved 37 pe/MIP without optical glue, 44 pe/MIP with glue.
- Lose x3-4 along optical path to PMT (attenuation+splice+ connector)





# Performance (MIP)

with

**PMT** 

and







# Tile test setup at Frascati





Erik Vallazza, Michela Prest

#### Fiber application study: Fiber Arrays



- Fiber Array mapped via a Template on a16 channel multi-anode photomultiplier H6568
- A second <u>Fiber Array</u> equipped with <u>SiPM</u> (8 channels, each corresponding to 2 of the adjacent channels of MAPMT)

The 2 arrays are accurately superimposed and aligned in a PS test beam (T11)



#### Interim Summary...

- SiPM interesting, still in evolution, improve linearity
- Look for other photodetectors to survive high B field
- Extensive R&D and tests
- Materials and structure for active media
- Fast-slow discrimination
- Many ways to compensating dual-readout (DR)?
- How about a "shashlik" configuration?



# Spare Slides

- Photo-converter for B = 3.5 T. The usual suspects: SiPM, HPD,
- special B-resistant PMTs, microchannel plate PMs.



- Hamamatsu blue-sensitive SiPMs
- 400 pixels on 1mm<sup>2</sup>, moderate crosstalk
- 2-3x more lightyield with green WLS
- ~6 times more with blue scintillator light

# Tile with SiPM on e beam

