SC RF cavity technology: the possibility of mass scale production, a global review

- Remarkable production experience exists for elliptical type cavities made from solid Niobium (around 500 units)
 - Mainly by European companies
 - Around 40complete modules (single and multi-cells) have been fabricated by European industry, partially turn-key conditions
- TESLA (20,000) and XFEL (1,000) pushed industrial effort for mass scale production
 - ILC just starts this effort in USA and Japan
- This talk gives a global overview on the present state of knowledge about mass scale production and related costs
- Short comments on "lessons learned from LHC magnet production"

Technical systems: Cavity / module

- Overview on industrialization / costing activities for mass scale production
 - European industrialization, costing method
 - Overview industrial methods
 - General comments on industrialization
 - Short report on American activities
 - Short report on Asian activities
- Conclusion

Technical systems: Cavity / Modules

- Elements in cavity / module system
 - Niobium material
 - Cavity fabrication
 - Input coupler
 - HOM coupler
 - Tuning system
 - Cavity treatment
 - Module assembly

European Approach to industrial mass production

- Industrial studies for TESLA (20000 cavities) at 2001
- Appendix to TESLA: XFEL part at 2001
 - 1000 cavities
- Revised XFEL TDR at 2006
 - Corrections for
 - Increased material costs
 - Risk assessment for costs
 - Inflation
- For ILC: Corrections / modifications to TESLA costs based on findings in XFEL part

European cost / mass production evaluation by Industrial Studies

- Analyze production of TTF components
 - Describe present fabrication process
 - Determine cost drivers, critical procedures
 - Define core technology, outsourcing possibility
- Implementation of mass production methods
 - Evaluate investment of machinery, tooling, roboting
 - Cost optimize flow of fabrication
 - Describe layout for "core tech" factory

European cost / mass production evaluation by Industrial Studies, cont.

- Complete planning of new "core tech" factory
 - Determine costs for buildings, investment, man power, ramp up & production & ramp down, overhead, consumables, QC,...
 - Get bits for outsourced parts
 - Sum up total cost of component fabrication
- NO learning curve assumed (e.g. -10% for doubling the production)
- But assumption: stable production after about 50 cavities, couplers,...
 - <u>Is verified e.g. by LHC magnet production: assembly time</u>
 <u>reached stable (and predicted) level after about 40 magnets</u>
- This cost model is valid because it was developed by experienced companies. Additional studies would require time, money and competent industry.

Components with European Industrial Studies

- Niobium fabrication, done
- Cavity fabrication, done
- Cavity treatment, done
- Module assembly, done
 - Revised study is in progress, see talk by R.Lange
- Input coupler fabrication
 - Study in progress, see talk by W.D.Moeller
- Industrial investigation of QA for EP electrolyte (my talk from yesterday)

Comments to mass production / cost evaluation of high purity Niobium

- Nb Material (high purity, RRR 300)
 - No shortage of raw Nb material (40.000 tons annual production, ILC needs around 500 tons
 - But limited number of high purity melting facilities
 - Today there are 4 qualified companies, but only one is capable of producing full yield for ILC
 - Marginal savings in mass production (from industrial study)
 - Size of melting furnace is limited
 - But some saving can be realized by
 - Disc rather than rectangular sheet (scrap can be recovered)
 - Other material produced ready for fabrication, e.g. flange material
 - Latest developments in large/single crystal cavities promise cost reductions, needs more experience / studies

Cavity production

Comments to industrialization / cost evaluation

Cavity fabrication

- Experienced companies in Europe
 - More than 500 type TESLA cavities have been fabricated so far
 - Fabrication process is well understood and stable
 - Cost drivers: EB welding process (50% total cost)
 - Cure: reduced pump down time by multiple vacuum chambers welder
 - Cure: mass production welding tooling
 - Cost saving in large scale production is well understood

Reduction of cavity fabrication cost

- 3 vacuum chamber welding machine:
 - Pump down and cool down in separate chamber
 - Welding in middle chamber
- Tooling for welding many parts in one cycle
- Outsource machining of parts

Production facility

DESY Electro-polishing machine

D.Proch, LCWS 2007

Comments to industrialization / cost evaluation

Cavity treatment

- Standard treatment is EP, 800°C / 130°C bake, high pressure water cleaning, clean-room assembly
- Technology transfer of EP to industry just started
 - In preparation for XFEL two orders were placed to install and operate EP facilities for 9-cell cavities (ACCEL, Henkel)
 - This EP installation should be operational end 2007
 - In total 30 9-cell cavities will be treated by about 100 um EP
 - Final treatment (small EP, baking, HPW) will be done at DESY
- Industrial involvement for the complete cavity preparation for high gradient performance is still missing

Baseline design

X-FEL coupler

D.Proch, LCWS 2007

Comments to industrialization / cost evaluation

Input coupler

- Cost is high, comparable with cavity fabrication !!
- Present industrial fabrication around 80 couplers.
 Industry identified cost savings which were included,
 e.g. standardized tube sizes
- Ongoing industrial study (XFEL) on mass production will deliver a reliable cost number
- Detailed info by next talk from W.D.Moeller

Cavity Preparation; String and Module Assembly

American industrialization / costing method

- There is fabrication experience in some laboratories from earlier projects
- American industry was only involved to minor extend
- A new industrial study on cavity, module and HLRF mass production is just finished
 - Production scheme is not yet optimized
 - Ideas for cost reduction in module design exist
 - No experience of US mass fabrication companies in Nb material machining

Asian industrialization / costing method

- In Japanese culture industry has been involved in early stage in accelerator projects, e.g. Tristan, KEKB
- Industry is a major driver in EP (electro polishing) and coupler development
- In house (KEK) cryo-module development is under way (STF)

Summary & Conclusion: Mass scale production of SC accelerator systems

- Industrial expertise exists in SC cavity and for most of the SC sub-systems (auxiliaries)
- European Industry has a world leading position
 - Japanese industry has specialized expertise
 - US industry just starts in SC technology
- SC cavity technology is based on poly-crystalin
 Nb material
 - Large grain / single crystal Nb material could reduce cost (and increase performance?) in the future

Can we learn from LHC magnet production for XFEL / ILC?

- Can we compare SC magnets with SC cavities?
 - Magnets and cavities are embedded in a cryogenic system (2K)
 - Both rely on intrinsic properties of SC material (QA of Nb sheets;
 QA of SC wire (and mag. properties if iron)
 - Magnets need final 100% cold test, the lowest magnet performance determines machine energy
 - Cavities need 100% vertical test, performance scatter in module can be compensated
 - Magnets: stringent alignment, residual fields are crucial, but can be measured at room temperature
 - Cavities: clean room conditions and final treatment are crucial
- Common: Both SC components are at the edge of technology
- Common: Fabrication technology is not available "of the shelf"

QA: LABORATORY EQUIPMENT (300 K TESTS)

QA: LABORATORY EQUIPMENT (300 K TESTS)

Examples of defects detected

Minor defect

Major defects

4 models to study effect of learning on production time

• Stanford-B:
$$t_n = t_1(n + c_{ex})^b$$

• De Jong:
$$t_n = c_{in} + t_1 n^b$$

• S-Curve:
$$t_n = c_{in} + t_1(n + c_{ex})^b$$

b<1

c_{ex} :previous experience

c_{in} :incompressible time (tool limit)

Learning percentage:

$$t_n / t_{2n} = 1/2^b$$

LHC: Learning Curve COLLARED COIL PRODUCTION

dipole no.

Courtesy of Babcock Noell, Germany

Personnel training IN COIL PRODUCTION

Courtesy of Jeumont, France

SERIES PRODUCTION OF LHC COMPONENTS

Courtesy of Ph. Lebrun

Conclusion: What can we learn from LHC magnet production for XFEL / ILC planning

- SC magnet and cavity fabrication is not (yet) of the shelf technology
 - Very tight supervision of companies is recommended
 - XFEL production will improve the situation, but can companies preserve this expertise until ILC construction?
- Cryostat assembly time (=cost) levels around 50 units
- QA on some components for ILC (e.g. Nb sheet scanning) might require automatic chains
- A pre-series production (after proto-typing) will establish the required expertise at companies for realistic bidding without too high risk margin.
 - A cooperative spirit should be established between scientific laboratories and production companies in early time