

Update on Silicon Pixel Readout for a TPC at NIKHEF

TILC08 - Sendai 4 March 2008

> Jan Timmermans NIKHEF

Micro Patterned Gaseous Detectors

- High field created by Gas Gain Grids
- · Most popular: GEM & Micromegas

Use 'naked' CMOS pixel readout chip as anode

CERN

Timepix pixel

Timepix chip:

•256x256 pixels

•pixel: 55x55 µm²

•active surface:

14x14 mm²

Timepix chip (1st version) produced Sept. 2006

Available for use in detectors since Nov. 2006

Timepix in gaseous detectors

- With Micromegas grid or GEM stacks
- Wafer postprocessing:
 - Integrated grid (Ingrid)
 - Enlarged pixels (with GEMs @ Freiburg)
- Discharge protection:

high-resistive (~10¹¹) Ω -cm amorphous Si layer (20 μ m thick) on top of CMOS chip (later maybe also high-resistive grid)

Full post-processing of a TimePix

"lifetime" of Medipix2/Timepix chips

"naked" Medipix chips:
 up to few hours; sometimes very short!
 (both in He and in Ar mixtures)

- With 4 μm amorphous Si:
 - in He/isobutane (80/20): > 3 months
 - In Ar/isobutane (80/20): ~ 1 day!
- With 20 μm protection layer ???

NIKHEF setup (> 22 Aug. 2007)

The "typical" track

Stable operation in Argon too!

After 2 weeks of cosmic event recording, it was time for a definitive assessment whether 20 µm SiProt is enough to protect against discharges...

Time mode

Final assessment: spark-proofness

- Provoke discharges by introducing small amount of Thorium in the Ar gas
 - Thorium decays to Radon 222 which emits 2 alphas of 6.3 & 6.8 MeV
 - Depose on average 2.5.10⁵ & 2.7.10⁵ e- in Ar/iC₄H₁₀ 80/20 at -420 V on the grid, likely to trigger discharges

Charge mode

During ~3 days, some 5.10⁴ alpha events recorded in 1% of which ...

... discharges are observed!

For the 1st time: image of discharges are being recorded

Round-shaped pattern of some 100 overflow pixels

Perturbations in the concerned column pixels

- Threshold?
- Power?

Chip keeps working!!

Sofar with 20 µm no more Timepix chip damaged by discharges

A 5 cm³ TPC (two electron tracks from ⁹⁰Sr source)

Pixel systems sofar....

- Timepix (also Medipix2) with triple-GEMs (Freiburg, Bonn)
- Timepix (also Medipix2) with single Micromegas (NIKHEF, Saclay)

Now:

- Timepix + amorphous Si (highly resistive) + integrated grid (Ingrid) (NIKHEF), soon also Saclay Will compare performance different thickness of protection layer: 0, 5, 10, 15 and 20 μ m
- larger drift lengths, up to 100 mm

- Sofar single-chip systems used
- Soon (Eudet deliverable) small multi-chip systems:
 - Bonn: two 4-chip boards → on endplate module
 - Saclay: one 8-chip board → on endplate module
 - NIKHEF: 4-chip board, fitting single-chip detector mechanics and drifter (could become endplate module)
- Later (~3/2009): aim for a 64-chip system (NIKHEF; may be too ambitious; bottleneck could be production of sufficient # Ingrids)

Summary

- A lot of progress made in last 'year'; not mentioned many details on track resolution studies and on signal development
- Part of the technology is ready:
 - Very good energy resolution for Ingrid devices
 - Ion backflow at the few per-mil level at high field ratio
- Discharge protection seems working for Ingrid (and Micromegas) devices
- Robust operation with GEM devices (without protection)

Next:

Build larger multi-chip detector systems with fast readout

Backup slides

Status of Timepix usage at NIKHEF

TPX operated 13 dec. B05 with 3 µm SiProt & Micromegas in He 20% iC4H10 1 month in He iC4H10 Switch to Ar 20% iC4H10, chip died after 2 days 24 jan. 1st fully post processed MPX 20 mar. MediPix2 with 3 µm SiProt & InGrid operated 4 days in He C08 with 3 µm SiProt & Micromegas 17 apr. TPX & guard electrode (G.E.) in He operated 3 Stop C08 after 3 months of continuous operation in He 25 jul. months in He iC4H10 E09 with 20 µm SiProt & InGrid placed 1st fully post in NEXT-1 chamber in He A06 with 20 µm SiProt & Micromegas placed 22 aug. in NEXT-2 chamber in He Flush NEXT-2 (A06) with Ar, stable operation for >40 days! 04 sep. TPX Flush NEXT-1 (E09) with Ar, same nice results 23 sep. operated in Ar iC4H10 26 sep. Introduce Thorium in NEXT-2 (A06), provoke discharges Recording alpha's tracks & even more... 19 ALL STILL WORKING !!

New Ingrid developments and results

- Process improvement: grids much flatter
 - Extremely good energy resolution:
 13.6 % FWHM with ⁵⁵Fe in P10
 - Removal of K_{β} 6.5 keV line: 11.7 % @ 5.9 keV in P10
- New wafer masks: hole pitches down to 20 µm with various diameters and gaps
 - Investigate Micromegas geometry
 - Test of the ion backflow theory
- Until now: 1 µm thin Al but can now be increased to 5 µm by electrolysis
 Expect less damaged from sparks

InGrid ion backflow measurements

- Phenomenon depends on:
 - Avalanche charge distribution
 - Funnel size
- therefore on the gas and grid geometry
 - Q density in the funnel decreases with the avalanche transverse diffusion
 - Funnel size decreases with the field ratio and hole pitch
- Backflow fraction reaches a (minimum) plateau
 - Occurs when ions backflow through neighboring holes
 - Simulation predicts this to occur at $\sigma/p = 0.5$

A "scratch" occurred during production Ingrid; Loose parts removed. Ingrid working!

Measurement of discharge "spectrum" (signal from Ingrid recorded on digital scope)

