

Optimisation of the vertex detector for the ILD

Yorgos Voutsinas on behalf of IPHC Strasbourg

- Comparative studies of the 2 main candidate VXD geometries on heavy flavour tagging and hadronic higgs BRs extraction
- VXD performance including beam pair bkg hits
 - Studies are based on LOI ZH → llqq branching ratios analysis

VXD candidate geometries

2 main candidate geometries for ILD VXD

VXD05: with 3 double layers equipped with silicon pixel sensors

VXD03: 5 single layers

	VXD03	VXD05
layers	5	3 x 2
sensitive length (mm)	62.5	125
sensitive width (mm)	11-15-22	11-22
radii (mm)	15-60	16–60
sensitive thickness (μm/ladder)	50	50
graphite insensitive thickness (µm/ladder)	134	134

Event reconstruction

- Higgsstrahlung channel e⁺e⁻ → ZH → μ⁺μ⁻X
 - → √s 250GeV, M_H 120GeV
 - → Higgs decaying according to its SM BR Z decaying to a pair of muons
 - Z recon. out of best candidate pair of muons
 - Rest of particles forced to 2 jets, using Durham algorithm
- MC file from LoI data samples unpolarized beams, cross section ~ 7fb
- Simulated with Mokka -06-07 release
 - Detector model ILD00
 - VXD models VXD03 (single layers) & VXD05 (double layers)
 - → s.p. Resolution assumed 2.8µm for all layers
- Reconstructed with ilcsoft v01-08-01, 250fb⁻¹
 - → New pandora for particle ID
- An independent sample of 500fb⁻¹ has been reconstructed to be used at the fit for the BR extraction

Physics background – event selection

- $e^+e^- \rightarrow ZZ \rightarrow \mu^+ \mu^- qq_{bar}$, beam polarization 0, $\sigma = 79.0 fb$
 - 250fb⁻¹ events reconstructed
- $e^+e^- \rightarrow WW \rightarrow \mu \nu_{\mu} qq_{bar}$, beam polarization 0, $\sigma = 2278.55fb$
 - Out of 10k events reconstructed, 1event passes the cuts=> assumed negligible
- 2f-4f background found negligible

Event selection

- (1) 70GeV < muon pair IM < 110GeV
- (2) 1 only Z candidate
- (3) 117GeV < Recoil mass < 150GeV
- (4) $|\cos\theta_{7}| < 0.9$
- (5) 100GeV < di-jet IM < 140GeV

$$S/\sqrt{S+B} = 21.4$$

4

ECFA 2010

Beam background

- Random noise clusters superimposed VTXNoiseClusters processor
- Hits densities
 - → ILC nominal values considered (√s 500GeV)
 - → Simulated with ILD_00fw model
 - Anti did field included
 - → Hits densities / cm² / BX

layer	VTX-DL	VTX-SL
1	4.4 ± 0.5	5.3 ± 0.5
2	2.9 ± 0.4	$6.0 \pm 0.5 \times 10^{-1}$
3	$1.54 \pm 0.14 \times 10^{-1}$	$1.9 \pm 0.13 \times 10^{-1}$
4	$1.34 \pm 0.11 \times 10^{-1}$	$6.9 \pm 0.6 \times 10^{-2}$
5	$3.2 \pm 0.7 \times 10^{-2}$	$3.1 \pm 0.4 \times 10^{-2}$
6	$2.7 \pm 0.5 \times 10^{-2}$	

layer	Readout (µs) - (#BXs superimposed)	
	SL	DL
0	25 (68)	25 (68)
1	50 (136)	25 (68)
2	100 (272)	100 (272)
3	100 (272)	100 (272)
4	100 (272)	100 (272)
5		100 (272)

→ Values taken from Rita's ILC note

5

Flavour tagging w/o beamstrahlung

- LCFI nets used for flavour tagging
- Training sample: $Z \rightarrow qqbar @ \sqrt{s} = 91.2GeV$, 10k for each geometry

- 700fb⁻¹ of Higgsstrahlung analyzed
- No beam bkg superimposed
- Statistical errors shown in plot
- Nets uncertainties ~ 1% less than statisticals
- B tagging performance almost identical
- C tagging performance: single layer option has a region for low and moderate efficiency with higher purity
 - Due to smaller distance from IP (?)

Flavour tagging with beamstrahlung

- Similar study but now with salt n' pepper background superimposed according to layer's r.o. time
- 250fb⁻¹ of Higgsstrahlung analyzed
- Silicon tracking slightly modified to gain processing time
 - Negligible effect on the performance
- Better performance for double layers geometry
- Maybe consequence of tracking
 - ~1k silicon tracks/evt for DL geometry
 - ~5k silicon tracks /evt for SL geometry
 - ~ 30/evt for both geometries w/o beam background

7

Flavour tagging with and w/o beamstrahlung

- VXD05 comparison with and w/o beamstrahlung added
- Degraded overall performance

Higgs branching ratios extraction

- Following LOI studies focus on VXD models comparison
- b(c) likeness: event wise variable
 - \rightarrow Likeness = x1x2/(x1x2+(1-x1)(1-x2)), where x1,2 are the outputs of the neural nets
- Previous studies shown that a cut based extraction of the flavours does not yield the best sensitivity
- There is no analytic distribution function so we use MC samples for the fitting
 - Split the initial sample to "data" and monte carlo
 - Split the monte carlo sample to H→bb, H→cc, H→gg, non hadronic higgs decays + physics background
 - Create 2D templates with b-c likeness and fit the data by changing the normalisations of each sample – fix bkg sample factor to 1
 - → Extract branching ratios from the normalisation factors
- Limitations for the fit
 - Finite statistics of MC samples
 - Bins with zero or very few events
 - Templates with the majority of the events at only 1 bin

Fitting results

- BR(H \rightarrow xx) = r_{xx} x BR(H \rightarrow xx)_{SM}, where r_{xx} are the fit results for each hadronic decay channel (bb,cc,gg) these factors expected to be 1 for SM
- Comparison between relative errors for the candidate models especially for c-tagging

	Double layers	Single layers
r _{bb}	0.93 <u>+</u> 0.06	0.99 <u>+</u> 0.06
r	0.93 <u>+</u> 0.59	0.86 <u>+</u> 0.54
r 99	1.68 <u>+</u> 0.58	0.88 <u>+</u> 0.61

- Trying different fitting methods
 - Finally choose χ^2 mostly due to low statistics of MC templates
 - \sim χ^2 (cope with limited data but not with very few evts @ 1 bin) cut at bins with <5 entries

$$X^{2} = \Sigma_{\text{bins}} (D_{\text{bins}} - (N_{\text{D}} / N_{\text{MC}}) \Sigma_{\text{s}} r_{\text{s}} N_{\text{s}}^{\text{bins}})^{2} / \sigma_{\text{bins}}^{2}$$

Higgs BRs + pair bkg hits

- Study of 100fb⁻¹
- Shape of the templates is changing
 - Light jets have a significantly bigger b-jet probability
- Seems like a retrain of the neural nets, including pair beam background hits, is required
- On going..

Conclusions – to do

- Flavour tagging w/o beam background
 - Single layers geometry has better performance at the region of high purity – low efficiency
 - Maybe due to smaller distance of inner layer from IP (15mm vs 16mm)?
- Flavour tagging + superimposed beamstrahlung hits
 - Degradation of overall performance
 - Double layers performs better should be an effect of tracking
- Higgs hadronics branching ratios
 - Similar performance of both candidate geometries
- To do
 - Retrain neural nets including pair beam bkg
 - Increase statistics at Higgs BR study in the presence of beamstrahlung

georgios.voutsinas@ires.in2p3.fr

Backup slides

Neural nets training

- LCFI nets used for flavor tagging
- Training sample: $Z \rightarrow qqbar @ \sqrt{s} = 91.2GeV$, 10k for each geometry

Test for overtraining: output of b-nets for pure b-sample

Uncertainties coming from neural nets training after 5 independent trainings compared to relative stat.error

MC templates for VXD05 - 500fb⁻¹

MC templates – 100fb⁻¹ + pair bkg hits

