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Klystron Theory
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Consider a klystron consisting of two cavities, a

“buncher” and a “catcher,” both gridded. (Fig.1). Let a

beam of electrons, which has been accelerated by a

potential Vo to a velocity uo, traverse the first pair of grids,

where it is acted upon by an rf voltage V1sint, reduced by

a “coupling coefficient” M. The latter modifies the voltage

across the grids to produce the effective voltage

modulating the electron beam. Expressions for the

coupling coefficient M (always less than 1) will be derived

later.
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where the electron charge e does not carry its own negative sign.  The electron energy is modified by the rf 

field at the gap and the following relationship can be written for the exit velocity u:
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from (1) and (2),  it follows,
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Fig. 1

The electrons in the beam enter the gridded gap with energy,
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If we assume that V1<<Vo (which is an good assumption for the first cavity of a two-cavity 

klystron), then

We consider, for now, that the first interaction gap is very narrow, and that we can neglect the finite transit time of

the entering electrons. (Later we will inquire into the happenings within both interaction gaps). The electrons then enter

and leave the first gap at time t1, then drift for a distance l, and arrive at the center of the second gap at time t2. Then,

(invoking again the small-signal assumption V1/V0<<1),
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Fig. 2

or, in terms of phase,
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X is the “bunching parameter”, and 0l/u0. 

Obviously, when X >1, t2 is multivalued and there is 

electron overtaking
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1 2o tI dt I dt

We have, differentiating (6)
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From (7) and (8), can now write
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And, replacing dt2/dt1 by its value in Eq. (9)
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The quantity of charge leaving the buncher in the time interval t1 to t1 +dt1 is Iodt1, where Io is the

beam DC current entering the buncher. This charge, after drifting, enters the catcher in the interval t2 to

t2+dt2. If It (total current, dc and rf) is the current transported by the beam to the entrance to the catcher,

then through conservation of charge,
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For X = 1, the current at the catcher becomes infinite, since by inspection of Fig. 2, the finite charge

transported from the buncher at t1 = 0 arrives at the catcher in a zero time interval (dt2/dt1 = 0 at t1 = 0)

To calculate It, one must then sum the absolute values of all current contributions to It from time

segments t11, t12, etc, at the buncher as follows,
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Fig 3(5)

The current waveforms at the buncher are shown in Fig. 3 below
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Now, since It is clearly a periodic function of ωt, it can be expanded in a Fourier series, as follows,
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the coefficients are given by,
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Using  and (7) above, we can now write

0
1 1 1cos ( sin ) ( )n

I
a n t X t d t





  




 

and 

0
1 1 1sin ( sin ) ( )n

I
b n t X t d t





  




 

(15)



S. Simrock & M. Grecki,  5th LC  School,  Switzerland, 2010,  LLRF & HPRF

Therefore, the catcher rf current It can be written as the following series

0 0 1 0

1

2 ( )cos ( )t nI I I J nX n t 


  

The n = 1 harmonic (the fundamental) is simply,
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Fig 4.

(17)

(18)

bn is identically equal to zero, since the integrand above is an odd function of t1. 

It turns out that the expression (15) for the an coefficients is also a representation of the Bessel 

functions of the first kind and  nth order (Fig. 4). 

(16)
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When X<1, the series converges (17) for all values of t2. For X=1, and X>1, there are discontinuities at

various t2 values as shown in Fig 3 (which would disappear if space charge were taken into account). The

harmonic amplitudes correspond to the peaks of the Bessel functions (Fig. 4). We can now calculate the output

power from the fundamental (n = 1), using (16) and the maximum value of J1(X), which is 0.582 and occurs at

X = 1.84. The output power is the product of the rf current I1 and the maximum voltage that can be developed

across the output gap without reflecting electrons, which is the beam voltage V0. Both are peak values, so,
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Consequently, for the two-cavity klystron, without space charge and with sinusoidal voltage

modulation, the maximum efficiency is 58 percent. The above derivation is completely valid, even when there

is electron overtaking. The small-signal approximation used to formulate the expressions used in launching the

velocity modulated beam into the drift space is not used beyond the buncher in arriving at the above result.

As we shall develop in following sections, however, the effects of space charge and a number of other

issues force a much lower efficiency in the two-cavity klystron case. The mathematics becomes too complex

for the purposes of these lectures, but it can be shown that the use of a third cavity, or an additional 2nd

harmonic cavity, or multiple cavities properly arranged, can produce I1/Io ratios as high as 1.8. In one case, a

multi-cavity experimental klystron efficiency of 74 percent has been a result of such optimum bunching.
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