Study of Beamstrahlung in the Vertex Detector

Paweł Łużniak (Łódź University)

lupawel@mail.desy.de

LCWS07, Hamburg

Vertex Detector layout

5

60 mm

25

22 mm

Simulation of beamstrahlung

- e⁺e⁻ pairs from beamstrahlung (background) simulated using Guinea Pig for nominal accelerator parameters @ 500 GeV.
- 14 mrad crossing angle.
- ILC detector simulation:
 - All charged particles tracked through Vertex Detector (VTX), accounting for multiple scattering and energy loss (own software tools)
 - Other detector components simulated using SGV 2.30 (fast simulation tool)
- VTX readout: 20 times per bunch train (1 readout cycle = 131 BX)
- Tracks detected in the central tracker refitted with hits from VTX (both physics and background hits) selected with Kalman Filter (own software tools)

Hits/mm²/BX, 1st layer

Variables describing hit cluster shape

Whether hit cluster is circular or elliptical depends on incident angle γ but also on detector technology.

ξ vs γ : physics and background , 1st layer

Paweł Łużniak

Study of Beamstrahlung in the Vertex Detector

Jet flavour tagging: b

Study of Beamstrahlung in the Vertex Detector

Jet flavour tagging: c

Study of Beamstrahlung in the Vertex Detector

Conclusions

- One may be able to distinguish between "physics" and "background" hits provided that it will be possible to measure elongation and direction of a hit (ξ and γ) (see also talk by Lukasz Maczewski).
- Jet tagging performance improves with reduced radius of first layer but only with no e^+e^- background. The background reduces jet tagging performance more strongly for smaller inner layer radius.
- It is possible to find optimal inner layer radius for jet tagging (in this case 12 mm)
- Optimisation should be made for a full physics analysis (eg. $h \rightarrow c\overline{c}, b\overline{b}$)

Additional slides: Hits/mm²/BX

Additional slides: Hits/mm²/BX

Additional slides:

