Track resolution studies with the "LiC Detector Toy" MC Tool

Winfried A. Mitaroff and Meinhard Regler

with contributions by R. Frühwirth, R. Höfler and M. Valentan

Institute of High Energy Physics Austrian Academy of Sciences A-1050 Vienna, Austria, Europe

in collaboration with the SiLC R&D Project

LiC is a simple but powerful and flexible software tool, written in MatLab, for detector design studies (geometries, material budgets). It is based on a helix track model including multiple scattering, and uses a Kalman filter for track fitting. We use this tool for comparing two variants of the LDC and one of the SiD layout, by studying track resolutions ($\Delta p_T/p_T$, $\Delta p_T/p_T^2$, transverse impact parameter) over a wide range of p_T in the barrel region. Investigation of the forward region so far for LDC only. **All results are still preliminary.**

Linear Collider Workshop, Hamburg: 30 May – 3 June 2007

:Ir

Program features – a reminder

- The "LiC Detector Toy" is a simple but powerful program tool for detector design studies. It aims at investigating track resolutions for the purpose of optimizing the layout (geometries and material budgets).
- Detector model corresponds to a collider experiment with a solenoid magnet. Geometry is cylinder symmetric w.r.t. beam axis z, but not necessarily symmetric w.r.t. the z = 0 plane. Surfaces are either cylinders ("barrel") or planes ("forward/backward region"). The track model is a helix.
- The latest version supports tracking from the barrel into the forward/backward region, and vice versa (i.e. re-entry into the barrel). However, this feature is not yet fully tested.
- Simulation takes into account multiple scattering, detector inefficiencies and measurement errors, but no other degradation. Track reconstruction is performed by a Kalman filter, with the reference surface being the inside of the beam tube. Goodness-of-fit tests are standard.
- Supported detectors are Si pixels, Si strips (single- or double-sided with any stereo angle), and a TPC. Detector description defined by a simple "input sheet". An interactive GUI is available as well.
- The program is written in MatLab. A beta release is available on request. For more information, please, consult the User Guide at

```
\label{eq:linear} \begin{array}{l} \mbox{http://wwwhephy.oeaw.ac.at/p3w/ilc/reports/LiC_Det_Toy/UserGuide.pdf} \\ \mbox{and the ILC forum at} \\ \mbox{http://forum.linearcollider.org/} \rightarrow \mbox{Fast Simulations} \rightarrow \mbox{LiC Detector Toy.} \end{array}
```


LiC Detector Toy: the GUI

Snapshots

New geometry) Genule - Gla
Modify geometry	
Selected barrel geometry: Default_new_Barrel_50×50.geom Selected forward geometry: Default_new_Forward.geom	Messages: No messages Warnings: No warnings

¥			Edit	simulati	ion par	ameters (a	auf debn	odel)	_	x =
Ei	le	<u>E</u> dit	<u>V</u> iew	Insert	<u>T</u> ools	<u>D</u> esktop	<u>W</u> indow	<u>H</u> elp		ъ
	Sol	lenoid	magnet	ic field [1	r]			4]	
	Ma	uss of t	he parti	cles [Ge\	/]			0		
	Nu	ımber	of event	s				1		
	Nu	mber	of track:	s per eve	nt			30000		
	Ru	n num	ber (int	eger >0)				1		
	Sta	art par	ameteri	range				Min	Max	
	Tra	ansver	semom	entum I(JeV/I			0.5	30	
	An	aular	range in	phi (Rad	1			0	6.2832	
	An	igular	range in	theta [R	ad]			0.1	3.0416	
	Rai	- nge in	- ×[mm]					-3	З	
	Rai	nge in	y [mm]					-3	3	
	Ra	nge in	z[mm]					-5	5	
	Fla	ıgs								
						A				
	Sin	nulatio	in .							
	Mu	intiple :	scatterir	1g 						
	De	asurei	ment en	rors		ĕ				
	Die	constr colav k	adtrack	/~		ŏ				
	Ch	ii2	aunaci	5		ĕ				
	Pul	lls hist	ograms			ē				
	Re:	sidual:	s histoa	rams		۲				
	Ve	rtex	. 2			۲				
		ОK								

Linear Collider Workshop, Hamburg: 30 May – 3 June 2007

LDC detector layout (barrel & fwd.)

ilr

Linear Collider Workshop, Hamburg: 30 May – 3 June 2007

LDC detector description

LDC Detector description

 $B_z = 4$ Tesla; Si efficiency = 95%

BARREL	R[mm]	$Z_{min}[mm]$	$Z_{max}[mm]$	Error distribution	$d[X_o]$	Remarks
Beam pipe	15			passive	.00115	.4 mm
						Be
VTX 1	16	-50	50	pads 50*50 (25*25)	.0020	wafer +
				equ. distrib.		ladder
VTX 2	26	-120	120	idem	idem	idem
VTX 3	37	idem	idem	idem	idem	idem
VTX 4	48	idem	idem	idem	idem	idem
VTX 5	60	idem	idem	idem	idem	idem
Support	90	-110	-90	passive	.0250	arbitrary
structures						_
idem	idem	90	110	passive	idem	idem
SIT 1	150	-150	150	strips 2*50	.0175	$0^{\circ}, 10^{\circ}$
SIT 2	290	-360	360	idem	idem	idem
TPC inn. wall	300	-2160	2160	passive	.0150	
100 pad rings	<1580	idem	idem	$\sqrt{(\sigma_1^2 + \sigma_2^2 \Delta z)}$	5*10-5	
		·	·		•	

FORWARD	Z[mm]	$R_{min}[mm]$	$R_{max}[mm]$	Error distribution	$d[X_o]$	Remarks
FTD 1	180	40	138	pads 50*300	.01	
FTD 2	300	48	140	idem	idem	
FTD 3	450	58	280	idem	idem	
FTD 4	800	88	idem	strips 2*90	idem	$\pm 6^{\circ}$
FTD 5	1200	123	idem	idem	idem	idem
FTD 6	1550	158	idem	idem	idem	idem
FTD 7	1900	188	idem	idem	idem	idem

:lr

SiD detector layout (barrel only)

Linear Collider Workshop, Hamburg: 30 May – 3 June 2007

SiD detector description

SiD Detector description

$B_z = 5$	Tesla;	Si	efficiency =	95%
-----------	--------	----	--------------	-----

BARREL	R[mm]	$Z_{min}[mm]$	$Z_{max}[mm]$	Error distribution	$d[X_o]$	Remarks	
Beam pipe	12	-62.5	62.5	passive	.00253	.4 mm	
		+ conus	+ conus			Be + Ti	
VXD 1	14.6	-62.5	62.5	pads 20*20	.00202	wafer +	
				equ. distrib.		ladder	
VXD 2	22.6	idem	idem	idem	idem	idem	
VXD 3	35.4	idem	idem	idem	idem	idem	
VXD 4	48.0	idem	idem	idem	idem	idem	
VXD 5	60.4	idem	idem	idem	idem	idem	
Support	168.7	-868.8	868.8	passive	.00304	dbl. wall	
cylinder		-894.3	894.3			C fibre	
TRK 1	218.0	-558.0	558.0	strips 50	.00800	single	
TRK 2	468.0	-825.0	825.0	idem	idem	idem	
TRK 3	718.0	-1083.0	1083.0	idem	idem	idem	
TRK 4	968.0	-1347.0	1347.0	idem	idem	idem	
TRK 5	1218.0	-1606.0	1606.0	idem	idem	idem	
FORWARD	Z[mm]	$R_{min}[mm]$	R _{max} [mm]	Error distribution	$d[X_o]$	Remarks	
not implemented so far							

Barrel region defined by $|\lambda| < 20^{o}$, in order to avoid the "supporting membranes" of the VXD.

ilr

Parametrization of track resolution

- Relative error of transverse momentum caused by the magnet spectrometer (cf. Gluckstern): $\sigma(p_T)/p_T = A \cdot p_T$
- Relative error of transverse momentum caused by multiple scattering (cf. Rossi-Greisen): $\sigma(p_T)/p_T = B \cdot \sqrt{1 + (m/P)^2} \approx B$ (approximation is good, except for slow protons)
- Above terms are expected to add quadratically. However, a simple parametrizatrion fits the data: $\sigma(p_T)/p_T = A \cdot p_T + B$ $\sigma(p_T)/p_T^2 = A + B/p_T$
- The transverse impact parameter w.r.t. the true vertex was heuristically parametrized as: $\delta_o = a + b \cdot e^{-p_T/c}$
- Just for completeness: the relative error of the absolute momentum is given by $\sigma(P)/P = \sqrt{[\sigma(p_T)/p_T]^2 + [\sigma(\vartheta) \cdot \cot\vartheta]^2}$ with $p_T = P \cdot \sin\vartheta$

LDC and SiD track resolutions: $\Delta p_{\rm T}/p_{\rm T}$

CAW Austina Academy *W. Mitaroff and M. Regler* ;lr iit

LDC and SiD track resolutions: $\Delta p_{\rm T}/p_{\rm T}$

;lr iit

LDC and SiD track resolutions: $\Delta p_{\mathrm{T}}/p_{\mathrm{T}}^2$

OAW Austria Academy *W. Mitaroff and M. Regler* ;|r iic

LDC and SiD track resolutions: $\Delta p_{\mathrm{T}}/p_{\mathrm{T}}^2$

OAW Austria Academy *W. Mitaroff and M. Regler* ;lr iit

LDC and SiD track resolutions: transverse i.p.

;|r iic

LDC and SiD track resolutions: transverse i.p.

;|r iic

LDC forward track resolutions: $\Delta p_T/p_T$

LiC Toy: rms(delta(pT)|pT) vs. pT true

:lr

LDC forward track resolutions: $\Delta p_T/p_T^2$

LiC Toy: rms(delta(pT)|pT^2) vs. pT true

ilr

LDC forward track resolutions: transverse i.p.

LiC Toy: i.p.-proj fitted vs. pT true

Linear Collider Workshop, Hamburg: 30 May – 3 June 2007

ilr

İİĿ

Summary of results (very preliminary)

Barrel region (LDC: $|\lambda| < 45^{o}$, SiD: $|\lambda| < 20^{o}$), $\mathbf{p_T} = 1 \dots 10$ GeV:

Detector	$\Delta p_T/p_T$	$\Delta p_T / p_T^2$	transv. i.p. (asympt.)
LDC $50 * 50 \mu$ m	$(3.0 \cdot p_T + 50.0) \cdot 10^{-5}$	$(2.7+52.5/p_T)\cdot 10^{-5}~{ m GeV}^{-1}$	9.49μ m
LDC $25 * 25 \mu$ m	$(3.2 \cdot p_T + 46.9) \cdot 10^{-5}$	$(3.0 + 48.1/p_T) \cdot 10^{-5} \text{ GeV}^{-1}$	5.47μ m
SiD $20 * 20 \mu m$	$(1.3 \cdot p_T + 149) \cdot 10^{-5}$	$(0.6 + 155/p_T) \cdot 10^{-5} \; { m GeV}^{-1}$	4.85μ m

Barrel region (LDC: $|\lambda| < 45^{o}$, SiD: $|\lambda| < 20^{o}$), $p_{T} = 5 \dots 50$ GeV:

Detector	$\Delta p_T/p_T$	$\Delta p_T/p_T^2$	transv. i.p. (asympt.)
LDC $50 * 50 \mu$ m	$(4.8 \cdot p_T + 37.1) \cdot 10^{-5}$	$(4.7 + 38.8/p_T) \cdot 10^{-5} \ { m GeV}^{-1}$	7.65μ m
LDC $25 * 25 \mu$ m	$(4.5 \cdot p_T + 37.5) \cdot 10^{-5}$	$(4.4 + 39.6/p_T) \cdot 10^{-5} \text{ GeV}^{-1}$	4.17μ m
SiD $20 * 20 \mu m$	$(2.3 \cdot p_T + 142) \cdot 10^{-5}$	$(2.0 + 150/p_T) \cdot 10^{-5} \text{ GeV}^{-1}$	3.45μ m

Forward region (LDC:
$$74^o < |\lambda| < 85^o$$
), $\mathbf{p_T} = 5 \dots 50$ GeV:

Detector	$\Delta p_T/p_T$	$\Delta p_T / p_T^2$	transv. i.p. (asympt.)
LDC $25 * 25 \mu$ m	$(3.8 \cdot p_T + 145) \cdot 10^{-3}$	$(9.3 + 28.0/p_T) \cdot 10^{-3} \ { m GeV}^{-1}$	137.4μ m
		bad fit	

:lr

IIL