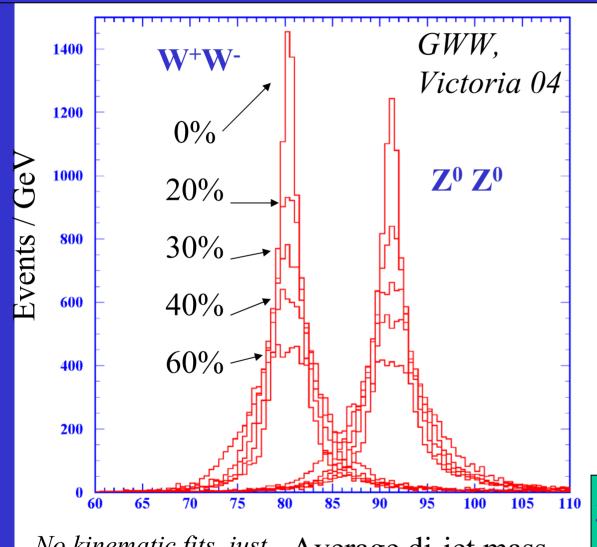

Impact of π^0 Reconstruction on PFA and Neutral-hadron TOF possibilities



Graham W. Wilson, University of Kansas LCWS07, Sim/reco session DESY Hamburg, June 2007

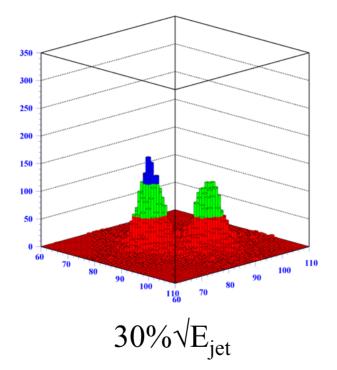
Outline

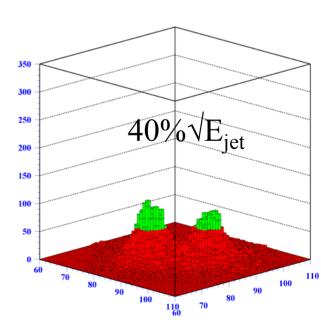
- Big picture on jet energy resolution potential
- Big detector
- Fast-timing ideas
- Applying π^0 mass constraint to hadronic events.

Di-jet mass distribution vs E_{jet} resolution

No kinematic fits, just direct measurement

Average di-jet mass (GeV)


Comparing e⁺e⁻ →WW and $e^+e^- \rightarrow ZZ$ at $\sqrt{s}=300$ GeV $\langle E_{jet} \rangle = 75 \; GeV$ (hadronic decays only, assume WW:ZZ = 1:1for illustration) *Reality* = 7:1! $\sigma(E_{jet}) =$ $xx\%\sqrt{E_{iet}}(GeV)$


30% $\sqrt{E_{jet}}$ is a good target. Physics (Γ_w =2 GeV) may demand even more!

 $20\%\sqrt{E_{jet}}$

Wouldn't 20% be really something!

Example detector model which should be able to achieve the π^0 performance indicated here.

A radially staggered buildable analog calorimeter with exquisite granularity, with no cost optimization using Tungsten. B = 3T.

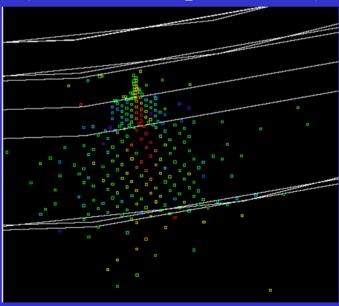
frankyaug05

R(m) Nlayers X0 Active Cell-size (mm)

EM Barrel 1: $2.10 10 0.5 Si 2.5 \times 2.5 \times 0.32$

EM Barrel 2: $2.13 ext{ } 10 ext{ } 0.5 ext{ } Si ext{ } 10 ext{ } \times 0.32$

EM Barrel 3: 2.16 20 0.5 Sc 20 × 20 × 2

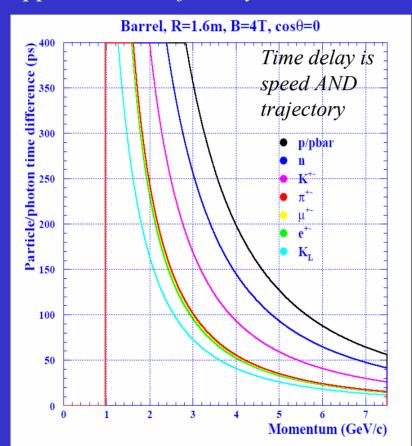

HCAL: $2.255 ext{ } 50 ext{ } 2.0 ext{ } Sc ext{ } 40 ext{ } \times 40 ext{ } \times 2$

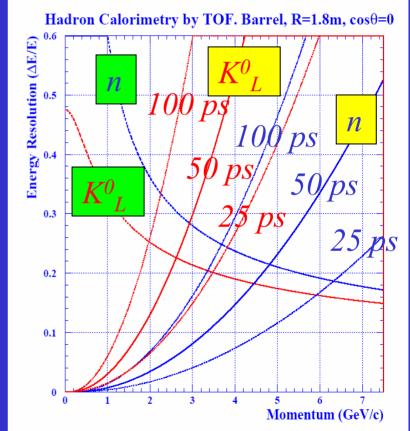
Choices made based on then current R&D work, driven by making a sensible, robust design with aggressive performance and minimizing Silicon area in a GLD-scale detector.

Expect: $\sigma_{\rm F}/E = 11\%/\sqrt{E}$ at low energy

With M. Thomson.
Acknowledgements to N. Graf

(W was cheaper in 05..)

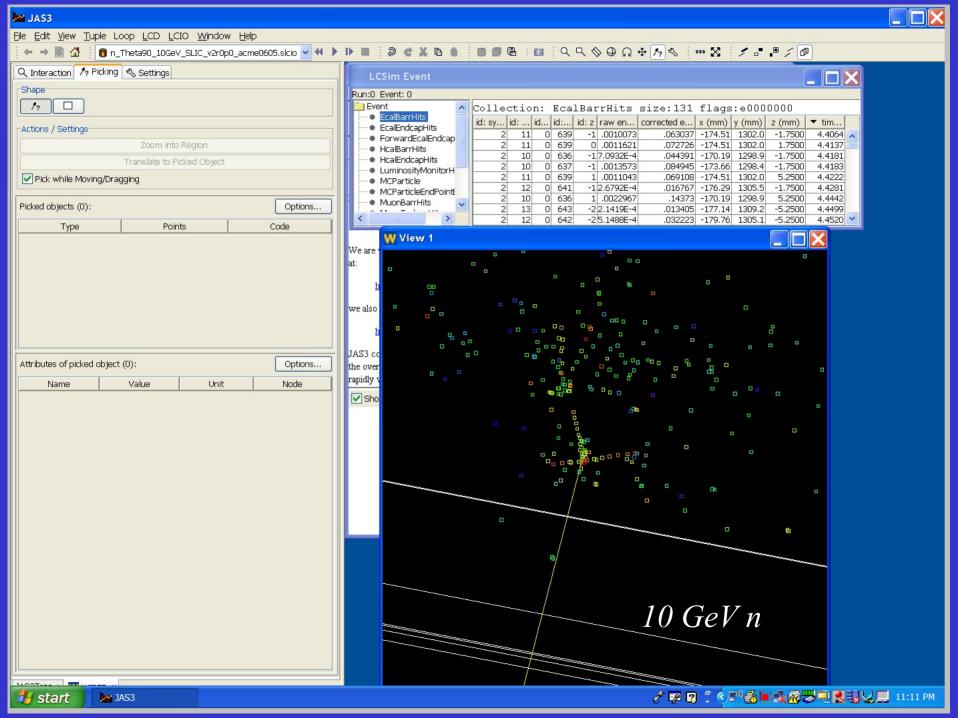



50 GeV photon

Fast Timing / Temporal Calorimetry

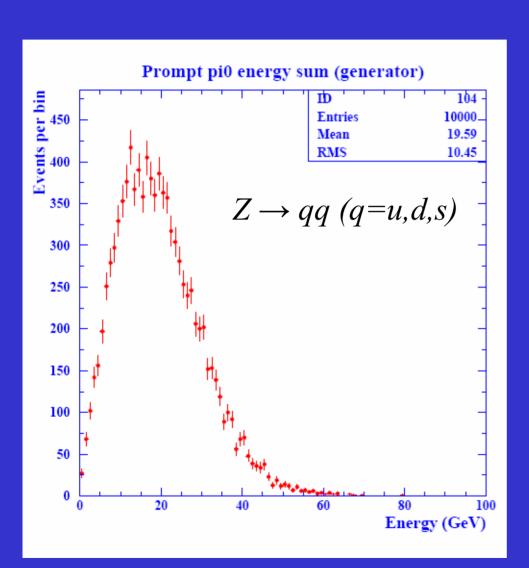
Idea: time resolution at below the 100 ps level is easily achievable with dedicated detectors. Can it be applied in a useful way in an ILC detector?

Can TOF help measure neutral hadrons at low p?



Can help resolving γ/π . (PID by TOF possible – but redundant with dE/dx in a TPC-based detector). Resolve confusion.

HCAL (LDC DOD)


TOF

Possible Detectors?

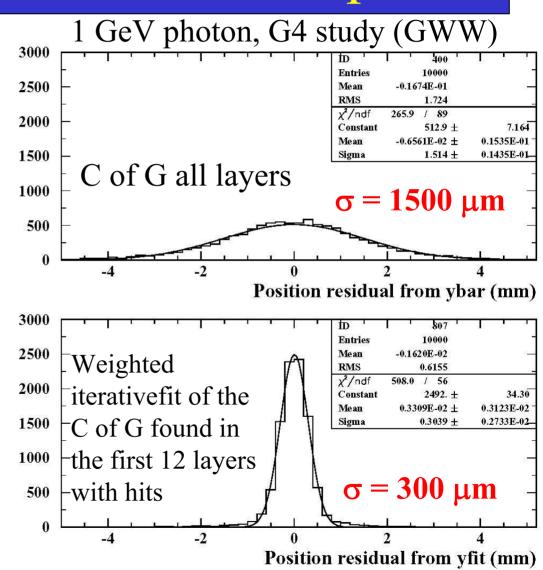
- State-of-the-art: MCP-PMT, $\sigma_t = 5$ ps measured using Cerenkov light in 10mm quartz, K. Inami et al, NIM A 560 (2006) 303.
 - Also see emerging "fast-timing" initiatives. (Fritsch, LeDu)
- Cerenkov layers also designed for C-based compensation.
- Ultra-fast scintillator pads with direct-coupled thin B-field tolerant photo-detectors tiled in a few layers through the calorimeter ??
 - Eg. quenched scintillators with FWHM of 400 ps per γ . (BC-422Q)
 - Will do time resolution studies with this.
- RPCs, Pestov
- Scintillating fibers.

Prompt EM energy component of jets

Dominated by π^0 's.

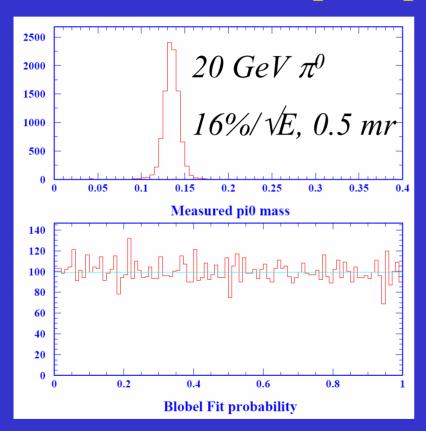
Defined as prompt if they are produced within 10 cm of the IP.

On average, with 16%/ \sqrt{E} EM energy resolution, the intrinsic EM resolution contribution to the jet energy is 0.71 GeV corresponding to 7.4%/ \sqrt{E} jet.

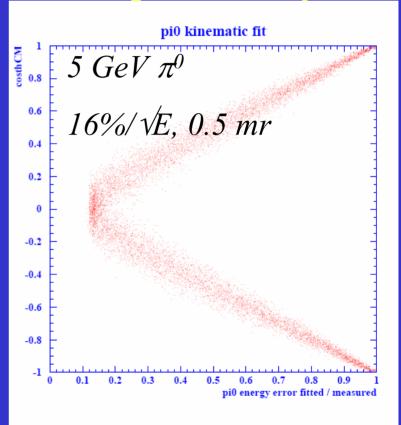

Can potentially reduce this contribution using π^0 mass constraint. May drive ultra-fine position resolution (eg. MAPS) and/or lead to an option of saving some Silicon layers.

Position resolution from simple fit

Key: measure the shower really well near the conversion point $(\gamma \rightarrow e^+e^-)$


2004 study with 1mm*1mm Si pixels (pre-MAPS I thought this was unbuildable ...) and 42 layers with sampling every 5/7 X_0

Position resolution does indeed improve by a factor of 5 in a realistic 100% efficient algorithm!



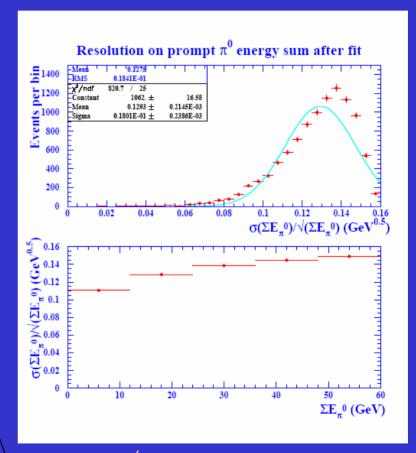
Still just $d/\sqrt{12}$!

Comprehensive study of applying massconstrained fit for π^0 's to improve the energy resolution of the *prompt* EM component of jets

See talk at Valencia meeting for more details. Proof of principle of the intrinsic potential per π^0 .

NOTE: Not only does the resolution improve, the resolution is known per pair

Practical Implementation for Hadronic Events


- 1. Assume perfect pairing of photons to π^0 s.
 - Estimate improvement.
 - Study implications for detector.
- 2. Implement an assignment algorithm which associates sibling photon pairs to parent π^0 s.
 - Now have a first implementation which can probably be improved considerably. Lots of work still to do here.
- 3. Implement in the context of full simulation of a particular detector model.
 - Need to care about photon calibration, resolution functions, purity, efficiency etc. (Clermont-Ferrand group, is working on this aspect for LDC). See P. Gris talk, work by C. Carloganu.

Applying mass-constraint to $Z \rightarrow$ hadrons

Assumes **perfect pairing** of sibling photons to parent π^0 (currently restrict to prompt π^0 s defined as originating within 10 cm of IP)

 $16\%/\sqrt{E}$, $\Delta \psi_{12} = 0.5 mr$

 $16\%/\sqrt{E}$, $\Delta \psi_{12} = 8mr$

Potential to improve resolution on average to 9.4%/\(\sqrt{E}\)

Summary on potential with perfect pairing

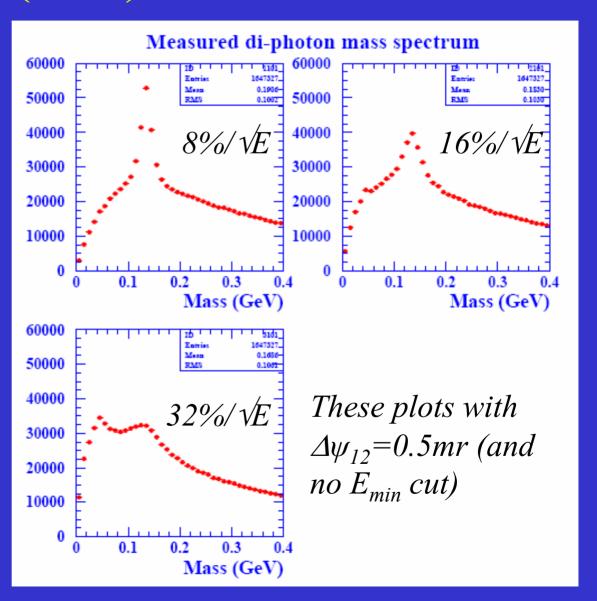
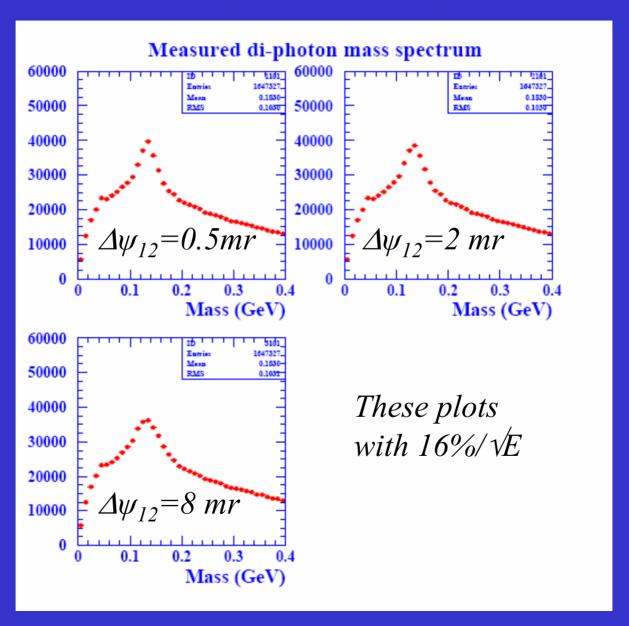

ECAL Energy Resolution (%)	No fit	Fit (0.5 mrad)	Fit (2 mrad)	Fit (8 mrad)
8.0	8.0	4.9	5.8	6.8
16.0	16.0	9.4	10.7	12.7
32.0	32.0	18.3	19.9	23.4

Table 1: Average normalized fractional energy resolution (%) on the total prompt π^0 energy in light-quark Z events with and without kinematic fitting for different assumptions on the ECAL energy resolution stochastic term, and the di-photon opening angle resolution assuming perfect pairing in the kinematic fit. Errors are less than 0.1%.


(will pause to digest this later in talk)

Include (vast) combinatorics

$$< n_{\pi 0} > = 8.6$$

Same, but vary opening angle resolution

Assignment Algorithm

- Very basic so far. (Snap-shot)
- $E_{\gamma} > 0.1 \text{ GeV}$
- $p_{fit} > 1\%$
- Form $\chi^2_{\text{mass}} = [(m m(\pi^0))/0.07]^2 \rightarrow p_{\text{mass}}$
- Use a discriminant, $D = p_{fit} p_{mass} E_{\pi 0} / \sigma_m$
- Using energy sorted photons, assign photons to pairings if they have the highest D for both photons.
- Unassigned photons, contribute with their normal measured energy.
- Performance may be strongly dependent on the actual combinatorics.
- Have also looked into a more global method of assignment using assignment problem methodology. Currently pondering how to enforce one-to-one assignment, while taking advantage of N³ rather than N! scaling of standard techniques.

Performance

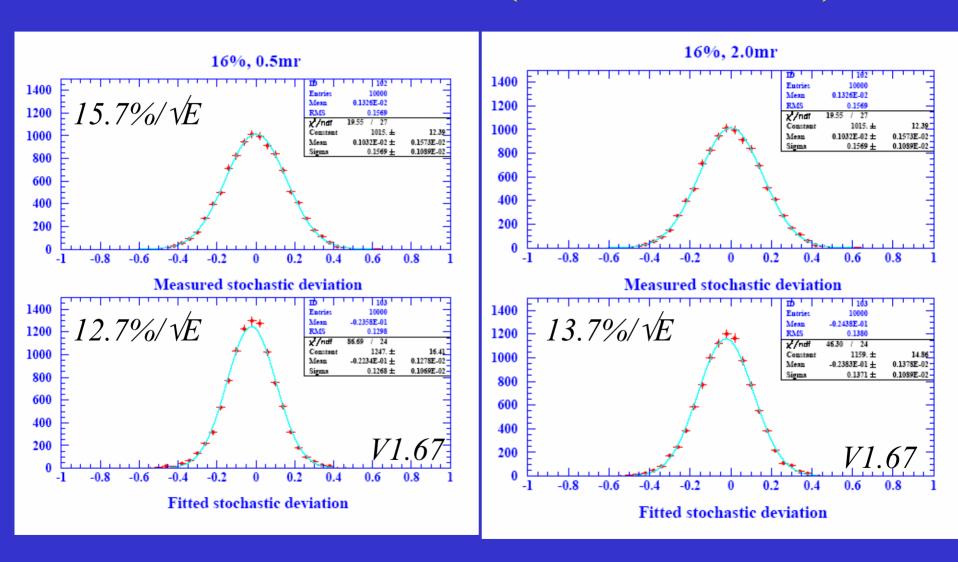
Fraction of prompt π^0 energy correctly fitted, ε_c

Fraction of prompt π^0 energy wrongly fitted, ε_W

Fraction of prompt π^0 energy unfitted, ε_{UF}

Typical Event

(selected as having performance similar to the average).


This one has $\Sigma E_{\pi 0} = 28$ GeV, $n_{\pi 0} = 14$, so $n_{\gamma} = 28$, $n_{\gamma \gamma} = 378$, and in total 107 $\gamma \gamma$ combinations passing the kinematic fit cuts.

The stochastic deviation in this particular event improves from $+ 9.9\%/\sqrt{E}$ to $-0.07\%/\sqrt{E}$

Number of viable pairings for this photon

```
🥇 analyse example.output - XEmacs
                                 AB5 C Mail
analyse example.output
  Dumping the configuration
        1np = 12 config = 0 1 3 1
        2np = 0 config = 0 0 0 0
        3np = 5 config = 63 1 13 2
  gamma
                                        unassigned
         4np = 0 config = 0 0 0 0 ←
        5np = 22 config = 104 1 7 3
  gamma
        6np = 4 config = 131 1 12 3
  gamma
        7np = 6 config = 104 2 5 4
  gamma
        8np = 6 config = 0 2 7 4
                                          mis-
  gamma
        9np = 4 config = 0 1 13 5
  gamma
         10np = 0 config = 0 0 0 0
                                         /assigned
  gamma
               0 \text{ config} = 0 0 0 0
  gamma
                 22 config =
  gamma
                22 config =
                             63 2 3 7
  gamma
                                          Correctly
                 0 config =
  gamma
  gamma
                 7 config =
                             288 1 16 8
                 6 config =
                                          assigned
                 9 config =
                             313 2 17 9
                 7 config =
  gamma
  gamma
                 7 config =
  gamma
        20np =
                6 config =
                            334 2 19 10
  gamma
        21np = 6 config =
                            351 1 22
                13 config =
                             351 2 21 11
                22 config =
                             364 1 24 12
                5 config =
                            364 2 23 12
  gamma
                6 config =
                            373 1 26 13
                 6 config =
                            373 2 25 13
                 5 config = 378 1 28 14
        28np =
                6 config = 378 2 27 14
          27.8106766 etotm:
                               28.3339062 etotf:
                                                   27.7744846
  Kinematic fit energy efficiency
                                         0.727168024
  Kinematic fit energy contamination:
                                         0.192166701
 Kinematic fit inefficiency:
                                         0.0806652158
  Kinematic fit F-O-M:
                                         0.587430477
  stochastic deviations:
                          0.0992171019 - 0.00686287507
Raw----XEmacs: analyse example.output
                                            (Fundamental) ---- 43%
Loading efs-cu...done
```

Current Results (10k Z events)

Summary on potential of π^0 mass-constraint in hadronic events ($\sqrt{s=m_7}$)

1. Perfect pairing

ECAL Energy Resolution (%)	No fit	Fit (0.5 mrad)	Fit (2 mrad)	Fit (8 mrad)
8.0	8.0	4.9	5.8	6.8
16.0	16.0	9.4	10.7	12.7
32.0	32.0	18.3	19.9	23.4

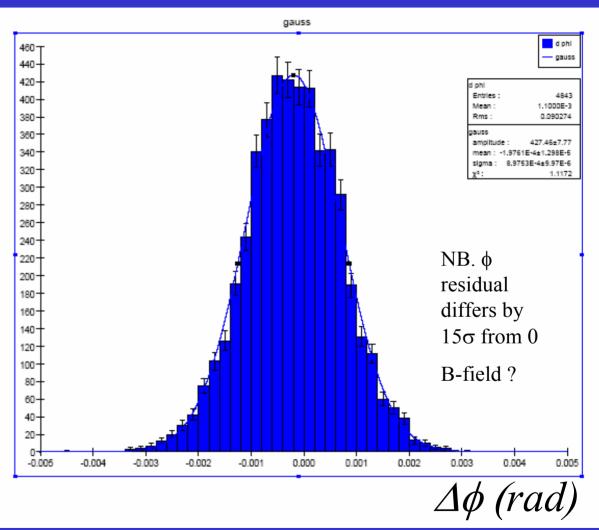
Table 1: Average normalized fractional energy resolution (%) on the total prompt π^0 energy in light-quark Z events with and without kinematic fitting for different assumptions on the ECAL energy resolution stochastic term, and the di-photon opening angle resolution assuming perfect pairing in the kinematic fit. Errors are less than 0.1%.

(uses fit to the error distribution from the fit)

	2. Assignment algorithm 1.6/				
Using fitted σ of	7.9	6.3	6.9	7.5	
deviation on same	15.7	<i>12.7</i>	13.7	14.8	
10k events	31.0	25.9	27.0	29.0	

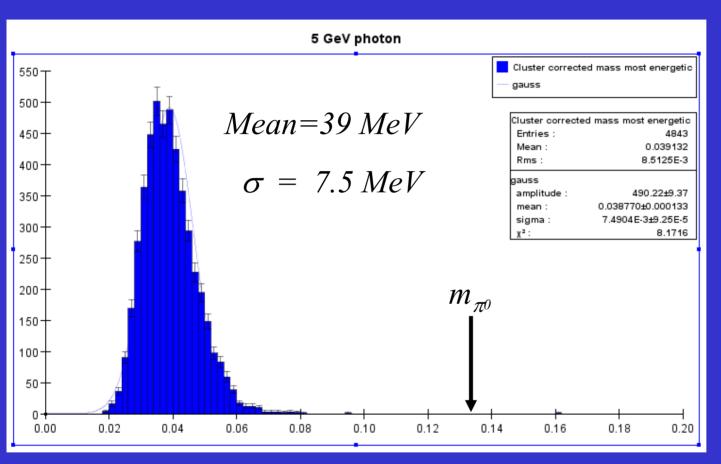
Summary

- EM calorimeter contribution to the jet energy resolution can plausibly be considerably improved using π^0 mass constraint in detector designs with fine granularity ECAL.
- Fast-timing has a lot of potential.
 - Particle ID, confusion mitigation, neutral hadron reconstruction.
 - Worthwhile to evaluate performance/feasibility of some of the possible approaches. Are you interested?


Backup Slides

Angular Resolution Studies

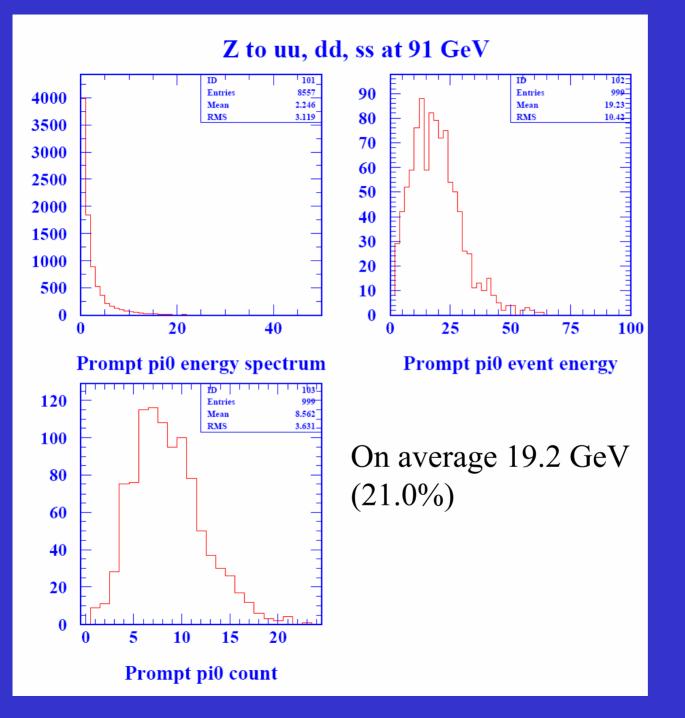
5 GeV photon at 90°, sidmay05 detector (4 mm pixels, R=1.27m)


Phi resolution of 0.9 mrad *just* using cluster CoG.

=> θ_{12} resolution of 2 mrad is easily achievable for spatially resolved photons.

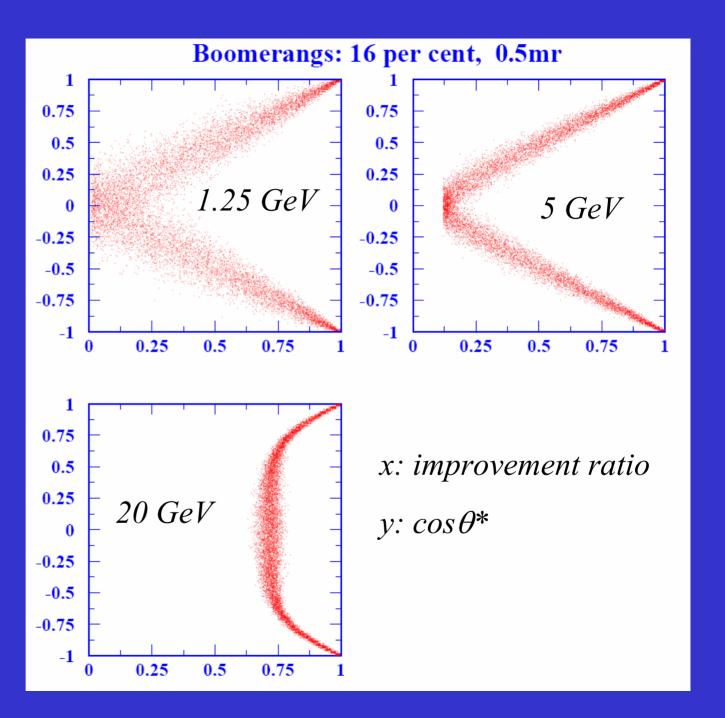
NB. Previous study (see backup slide), shows that a factor of 5 improvement in resolution is possible at fixed R using longitudinally weighted "track-fit".

Cluster Mass for Photons

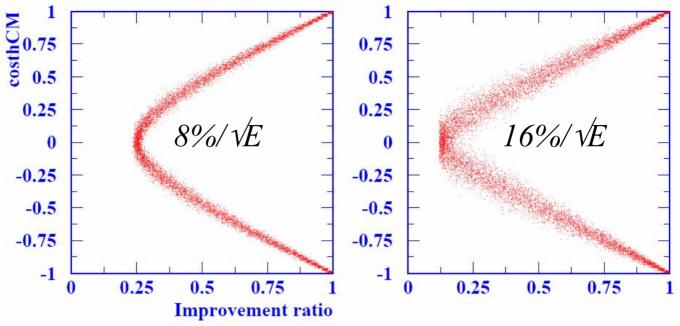


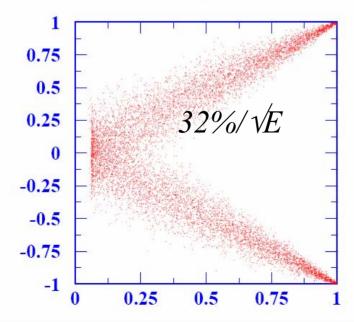
Of course, photons actually have a mass of zero.

The transverse spread of the shower leads to a non-zero cluster mass calculated from each cell.


Cluster Mass (GeV)

Use to distinguish single photons from merged π^0 's. Performance depends on detector design $(R, R_M, B, cell\text{-size}, ...)$

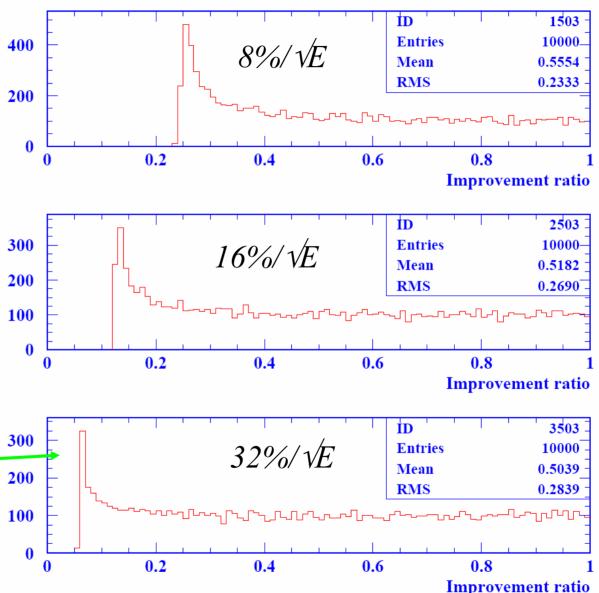

NB generator has ISR and beamsstrahlung turned off.


Dependence on π^0 energy

 $5 \ GeV \pi^0$

Improvement ratio (x-projection) **DOES** depend on Energy resolution (for this π^0)

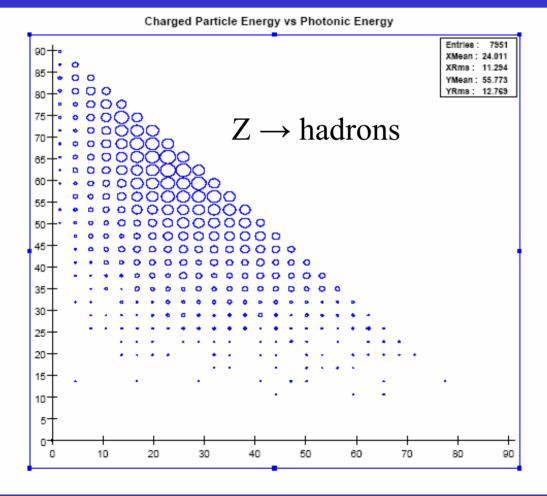
- But on average the dependence is only weak (see next slide)


This slide has been corrected from that presented at Vancouver

$5 \ GeV \pi^0$

Average improvement factor not highly dependent on energy resolution.

BUT the maximum possible improvements increase as the energy resolution is degraded.



PFA "Dalitz" Plot

Also see: http://heplx3.phsx.ku.edu/~graham/lcws05 slacconf gwwilson.pdf

"On Evaluating the Calorimetry Performance of Detector Design Concepts", for an alternative detector-based view of what we need to be doing.

On average, photonic energy only about 30%, but often much greater.

γ , π^0 , η^0 rates measured at LEP

	Experimental results				JETSET	HERWIG
	OPAL	ALEPH [6]	DELPHI [9]	L3 [10–12]	7.4	5.9
photon						
x_E range	0.003 - 1.000	0.018-0.450				
N_{γ} in range	16.84 ± 0.86	7.37 ± 0.24				
N_{γ} all x_E	20.97 ± 1.15				20.76	22.65
π^0						
x_E range	0.007 - 0.400	0.025 - 1.000	0.011 0.750	0.004 - 0.150		
N_{π^0} in range	8.29 ± 0.63	4.80 ± 0.32	7.1 ± 0.8	8.38 ± 0.67		
N_{π^0} all x_E	9.55 ± 0.76	9.63 ± 0.64	9.2 ± 1.0	9.18 ± 0.73	9.60	10.29
η						
x_E range	0.025 - 1.000	0.100-1.000		0.020-0.300		
N_{η} in range	0.79 ± 0.08	0.282 ± 0.022		0.70 ± 0.08		
N_{η} all x_E	0.97 ± 0.11			0.91 ± 0.11	1.00	0.92
$N_{\eta} x_p > 0.1$	0.344 ± 0.030	0.282 ± 0.022			0.286	0.243

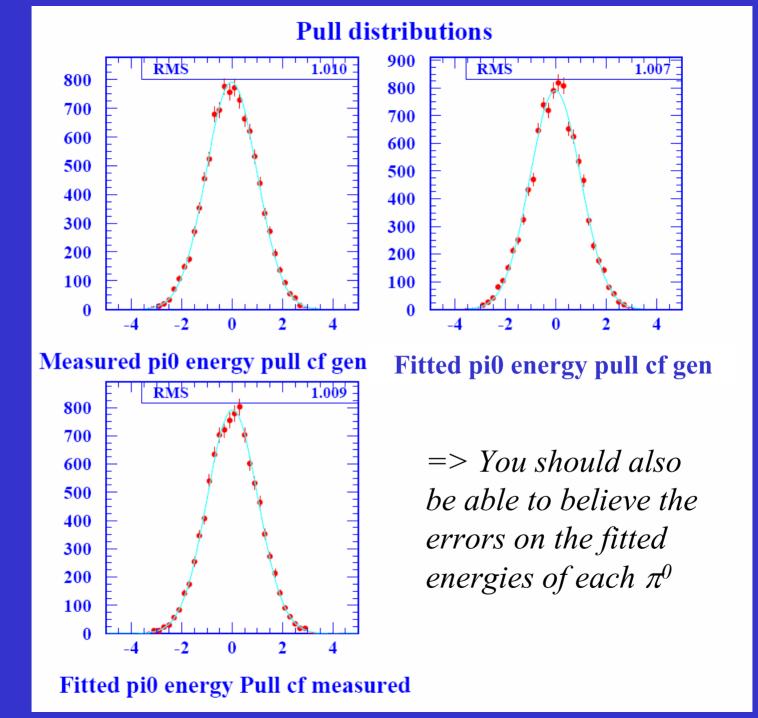
Consistent with JETSET tune where 92% of photons come from π^0 's.

Some fraction is nonprompt, from K_S^0 , Λ decay

9.6 π^0 per event at Z pole

2. π^0 Kinematic Fitting

• For simplicity used the following measured experimental quantities:


```
E_1 (Energy of photon 1)

E_2 (Energy of photon 2)

\psi_{12} (3-d opening angle of photons 1 and 2)
```

- Fit uses
 - 3 variables, $x = (E_1, E_2, 2(1 \cos \psi_{12}))$
 - a diagonal error matrix (assumes individual γ's are completely resolved and measured independently)
 - * and the constraint equation

$$m_{\pi^0}^2 = 2 E_1 E_2 (1 - \cos \psi_{12}) = x_1 x_2 x_3$$

