Simulation Study of FPCCD vertex detector at ILC

T. Nagamine Tohoku University May 30-Jun 2, 2007 LCWS 2007, DESY

Outline

- FPCCD and Vertex Detector Structure
- Impact Parameter Resolution
- Pair Background in FPCCD Vertex Detector
- Track finding/fitting in FPCCD Vertex Detector
- Cluster Shape Analysis
- Energy Loss in Thin Material

FPCCD features

- Large area device can be made
 -> small dead area between sensors
- Fully depleted epitaxial layers -> Less diffusion/smearing
- Very small pixel size
 - -> good hit position resolution (<2 μ m)
 - -> Lower occupancy
- No charge transfer during a bunch train
 - -> Avoid EM noise from beam
- Very thin sensors (50 μm or less)
 - -> Less Multiple scattering, small signals
- High back ground hit rate accumulated
 - -> Need good background rejection and tracking method

Structure of Vertex Detector

- 3 doublets 2 mm gaps
- Silicon thickness : 50 µm (0.53x10⁻³X₀)
- Epitaxial layer thickness : 15 µm
- Pixel size : 5x5 µm

CCD Cross Section

Structure of Vertex Detector

- 3 doublets 2 mm gaps
- Silicon thickness : 50 µm (0.53x10⁻³X₀)
- Epitaxial layer thickness : 15 µm
- Pixel size : 5x5 µm

CCD Cross Section

Structure of Vertex Detector

- 3 doublets 2 mm gaps
- Silicon thickness : 50 µm (0.53x10⁻³X₀)
- Epitaxial layer thickness : 15 µm
- Pixel size : 5x5 µm

CCD Cross Section

Geometry for Simulation Study

Doublet 3 Doublet I Double 2

- Cylinder shape used as each layer
- Layer thickness : 80µm
- 50µm for CCD, 30µm for Support Material, Air used for gaps
- 2 mm separation for each doublet
- 3 configurations are studied
- Doublet 1 : R= 20 and 22 mm
- Doublet 2 : R= 32 and 34 mm
- Doublet 3 : R= 48 and 50 mm
- Hit position resolution: 2µm
- Beam Pipe : Be, t=250µm, R=18mm

Impact Parameter Resolution σ_r Momentum Dependence

Impact Parameter Resolution cosθ dependence at 1, 3, 10 and 30 GeV/c

 σ_r

Effect of Pair Background to Track Finding

- Estimate track-hit matching efficiency using Toy MC
- Generate a true hit around a track with distribution functions obtained by Full MC
- Generate Background hits randomly around the track; 50, 100 and 200 hits/mm²
- Accept when the true hit closer to the track than background hits
- Sizes of pixel and cluster are ignored

Background rates in VTX With and Without anti-DID

CAIN + Jupiter(Geat4) results

- Beam Parameter: nominal 500GeV, 14 mrad
- Background rate is reduced to 1/2 with ANTI-DID Field

Z-distribution of Pair **Background hits**

Layer 2

By Fujishima

Track Hit displacement at layers of the inner Doublet

R1,R2 : Distance/Displacement between extrapolated point to true hit

Track-Hit distance distributions

Hit Finding Efficiencies on Layer 2

- Efficiency loss due to background in one of the layers of Doublet is small or tolerable.
- FPCCD based Vertex Detector with doublet structure can work under hight hit rates.
 - Good outer tracking detector SIT and TPC
 - With outer 4 layers, precise extrapolation to inner layers is possible.
 - Very thin layers reduce track errors.
 - Small pixel size matches the small track errors.

Cluster Shapes of Low- and High-Pt tracks

RED: Low-Pt Track (Pair Background) BLUE: High-Pt Track

R-Phi Plain

R-Z Plain

Distributions of Cluster Width v.s. Z for 1 GeV/c μ⁻ Tracks

accept

- Left: Phi, Right: Z
 Clear Z dependence of Cluster Width in Z

Distributions of Cluster width v.s. Z for Pair Background

- Left: Phi, Right: Z
- No Z dependence in both Phi and Z

Efficiencies for 1 GeV/c µ⁻ Tracks

Cluster Shape Rejection for Pair Background

• Pair BackGround Rejection : 1/2 ~ 1/20 depend on Z

Energy Deposit Study in Very Thin Silicon Layer

Geant4 Simulation T = 1, 3 and 5 µm 1 GeV/c Muon

MPV and Elow(>99%)

Summary

- Good Impact Parameter Resolution can be achieved with FPCCD base Vertex detector.
- Good tracking efficiency can be expected under high background rate (100 hits/mm²) for higher momentum region, and up to 50 hits/mm² for lower momentum region
- Pair Background rejection/discrimination is possible by Cluster shape (rejection factor : 1/2~1/20)
- Need more study for energy deposit in thin Si layers

Impact Parameter Study and Helix Parameter

Impact Parameter Resolution R dependence (OLD Geometry)

- Impact Parameter Resolution(R-phi plane) v.s. Momentum
- μ^{-} at cos(θ)=0.05
- İmpact Parameter Resolution increases as radius increases

Track Finding in Pair Background

- Track Finder is under development in GLD SimTools!
- Efficiency depends on probability to pick up a right hit.
- Area of the window depends on polar angle of track as 1/ $\sin^4 \theta$

Plasmon Spectrum Measurement by Electron Spectrometer

(a) (b)

J. Perez, et al, PR A16, p1061

FIG. 1. Cross section of the high-voltage electron analyzer.

Electron Energy Loss 0.76 and 3 μm AI,T=1.0 MeV

Pair BackGround Trajectory

- Pair Background(e+/e-) have low-Pt
- Their Radii are small
- They hit the vertex detector many times

Distribution of Pair Background in Vertex Region

Cluster Overlap Pattern

BackGround hit

Hit Pixel

- +
- Reconstructed Hit Point
- Merged Cluster

|R2| resolution v.s. Momentum

~ 1/3 of Impact Parameter Resolution at IP

Energy Deposit in Thin material

 Effect of statistical fluctuation of collision

 Effect of Plasmon
 Excitation

differential collision cross section in Silicon H. Bichsel, Rev. Mod. Phys. 60, p663