### **Study of anomalous** *VVH* **interactions at a Linear Collider**

LCWS07 and ILC2007

May 30 to June 03, 2007

**DESY, Hamburg, Germany** 

### S.K.Biswal and Rohini M. Godbole $^1$

*in collaboration with* Debajyoti Choudhury<sup>2</sup> & Mamta<sup>3</sup>

<sup>1</sup>Centre for High Energy Physics, Indian Institute of Science, Bangalore, India
 <sup>2</sup>Department of Physics and Astrophysics, University of Delhi, Delhi, India
 <sup>3</sup> Department of Physics, S.G.T.B. Khalsa College, University of Delhi, Delhi, India

### VVH interaction

- VVH interaction is generated from the kinetic term of the Higgs field after symmetry breaking.
- The strength and structure of VVH interaction depends upon the quantum number of the Higgs field, such as CP, weak isospin, hypercharge etc.
- At an e<sup>+</sup>e<sup>-</sup> collider (like ILC), the VVH vertex can be studied through Gauge Boson Fusion and Bjorken process.

### **Anomalous Higgs interactions**

Most general *VVH* coupling structure:

$$\Gamma_{\mu\nu} = g_V \left[ a_V \ g_{\mu\nu} + \frac{b_V}{M_V^2} \ (k_\nu^1 k_\mu^2 - g_{\mu\nu} k^1 . k^2) + \frac{\tilde{b}_V}{M_V^2} \ \epsilon_{\mu\nu\alpha\beta} k^{1\alpha} k^{2\beta} \right]$$

where,

$$g_W^{SM} = e\cos\theta_w M_Z, \quad g_Z^{SM} = 2em_Z/\sin 2\theta_w,$$

$$a_W^{SM} = 1 = a_Z^{SM}$$
,  $b_V^{SM} = 0 = \tilde{b}_V^{SM}$ , and  $a_V = 1 + \Delta a_V$ .

 $b_V$  and  $b_V$  can be complex. We treat them to be small parameters, i.e., quadratic terms are dropped.

# **Higgs production at** $e^+e^-$ **collider**

 $e^+e^- \rightarrow e^+e^-Z^*Z^* \rightarrow e^+e^-H(b\bar{b})$  (Z-fusion)  $\rightarrow \nu_e\bar{\nu}_eW^*W^* \rightarrow \nu_e\bar{\nu}_eH(b\bar{b})$  (W-fusion)  $\rightarrow ZH \rightarrow f\bar{f}H(b\bar{b})$  (Bjorken)



 $M_H = 120 \text{ GeV}, Br(H \rightarrow b\overline{b}) \approx 0.68$ b-quark detection efficiency = 0.7  $\sqrt{s} = 500 \text{ GeV}, \mathcal{L} = 500 \text{ fb}^{-1}$ 

### **Some comments**

- The process  $e^+e^- \rightarrow \nu_e \bar{\nu}_e H$  has the highest rate for an intermediate mass Higgs boson.
- All non-standard couplings (ZZH + WWH) are involved.
- Final state has two neutrinos (missing). Only a few observables can be constructed.
- Interference of SM part of W fusion diagram with non-standard part of Bjorken diagram is large even away from Z pole and can not be separated by cutting out Z pole.
- Need to fix/constrain  $b_Z$  and  $\tilde{b}_Z$  using Bjorken process before going to study WWH vertex using the process  $e^+e^- \rightarrow \nu_e \bar{\nu}_e H$ .

### **Observations with Unpolarized states**

- Strong and robust limits on  $\Re(b_z)$ ,  $\Re(\tilde{b}_Z)$  and  $\Im(\tilde{b}_Z)$ .
- Contamination from ZZH coupling to the determination of the WWH vertex is quite large.
- Relatively poor sensitivity to  $\tilde{T}$ -odd ( $\Im(b_Z), \ \Re(\tilde{b}_Z)$ ) couplings.
- No direct probe for WWH couplings. However, quite strong limits are obtained for  $\Re(b_W)$  and  $\Im(\tilde{b}_W)$ .

Biswal, Choudhury, Godbole and Singh, Phys. Rev. D 73, 035001 (2006).

# **Possible improvements ?**

#### In this work we investigate:

- Use of Initial Beam Polarization.
- Measurement of final state  $\tau$  Polarization.
- Going to higher c.m. energy.

#### An advance summary of our results:

- Use of Beam Polarization improves sensitivity to  $\Im(\tilde{b}_Z)$ ,  $\Im(b_W)$  and  $\Re(\tilde{b}_W)$ .
- Measurement of final state  $\tau$  polarization helps to get stronger limit on  $\Im(b_Z)$ .

#### • At higher $\sqrt{s}$ :

- Observables constructed excluding Z-pole contributions become better probes and hence may probe WWH couplings better.
- Increase in energy helps improve the probing of  $\Re(\tilde{b}_Z)$  even after inclusion of both ISR and Beamstrahlung effects.

### **Kinematical cuts**

- Plan: construct observables with definite  $CP/\tilde{T}$  transformation properties using beam/final sate polarizations and other kinematic variables to probe the anomalous couplings.
- Need to devise kinemetical cuts to remove usual backgrounds.

| Variable                                  |                  | Limit                       | Description                                    |
|-------------------------------------------|------------------|-----------------------------|------------------------------------------------|
| $\theta_0$                                | $5^{\circ} \leq$ | $\theta_0 \leq 175^{\circ}$ | Beam pipe cut, for $l^{-},l^{+},b$ and $ar{b}$ |
| $E_{b}, E_{\overline{b}}, E_{l-}, E_{l+}$ | $\geq$           | 10 Gev                      | For jets/leptons                               |
| $p_T^{ m miss}$                           | $\geq$           | 15 GeV                      | For neutrinos                                  |
| $\Delta R_{b\bar{b}}$                     | $\geq$           | 0.7                         | Hadronic jet resolution                        |
| $\Delta R_{q_1q_2}$                       | $\geq$           | 0.7                         | Hadronic jet resolution                        |
| $\Delta R_{l-l+}$                         | $\geq$           | 0.2                         | Leptonic jet resolution                        |
| $\Delta R_{l+b}, \Delta R_{l+\bar{b}},$   |                  |                             |                                                |
| $\Delta R_{l-b}, \Delta R_{l-\bar{b}}$    | $\geq$           | 0.4                         | Lepton-hadron resolution                       |

Additionally we use two different cuts on  $m_{f\bar{f}}$ ,

 $\begin{array}{ll} R1 & \equiv & \left| m_{f\bar{f}} - M_Z \right| \leq 5 \, \Gamma_Z & \mbox{ select Z-pole }, \\ R2 & \equiv & \left| m_{f\bar{f}} - M_Z \right| \geq 5 \, \Gamma_Z & \mbox{ de-select Z-pole.} \end{array}$ 

### **Effect of Beam Polarization**

$$\sigma(P_{e^{-}}, P_{e^{+}}) = \frac{1}{4} [(1 + P_{e^{-}})(1 + P_{e^{+}})\sigma_{RR} + (1 + P_{e^{-}})(1 - P_{e^{+}})\sigma_{RL} + (1 - P_{e^{-}})(1 + P_{e^{+}})\sigma_{LR} + (1 - P_{e^{-}})(1 - P_{e^{+}})\sigma_{LL}]$$

 $\sigma_{RL}$ :  $e^-$  and  $e^+$  beams are completely right and left polarized respectively, i.e. ,  $P_{e^-} = +1$ ,  $P_{e^+} = -1$ .

$$\sigma^{-,+} = \sigma(P_{e^-} = -0.8, P_{e^+} = 0.6)$$

### Asymmetries

$$\vec{P}_e = \vec{p}_{e^-} - \vec{p}_{e^+}, \qquad \vec{P}_f^- = \vec{p}_f - \vec{p}_{\bar{f}}, \qquad \vec{P}_f^+ = \vec{p}_f + \vec{p}_{\bar{f}} = -\vec{p}_H$$

|                 | Combination                                                                                                                                                         | Asymmetry                                                                                                        | Probe of          |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------|
| $\mathcal{C}_1$ | $ec{P_e} \cdot ec{P_f}^+$ (CP - , $	ilde{T}$ +)                                                                                                                     | $A_{FB}(C_H) = \frac{\sigma(C_H > 0) - \sigma(C_H < 0)}{\sigma(C_H > 0) + \sigma(C_H < 0)}$                      | $\Im(	ilde{b}_V)$ |
| $\mathcal{C}_2$ | $[ec{P_e}	imesec{P_f^+}]\cdotec{P_f^-}$ (CP - , $	ilde{T}$ -)                                                                                                       | $A_{UD}(\phi) = \frac{\sigma(\sin\phi > 0) - \sigma(\sin\phi < 0)}{\sigma(\sin\phi > 0) + \sigma(\sin\phi < 0)}$ | $\Re(	ilde{b}_V)$ |
| $\mathcal{C}_3$ | $ \begin{bmatrix} [\vec{P}_e \times \vec{P}_f^+] \cdot \vec{P}_f^- \end{bmatrix} \begin{bmatrix} \vec{P}_e \cdot \vec{P}_f^+ \end{bmatrix} $ (CP - , $\tilde{T}$ -) | $A_{comb} = \frac{(FU) + (BD) - (FD) - (BU)}{(FU) + (BD) + (FD) + (BU)}$                                         | $\Im(b_V)$        |

F(B): *H* is in forward (backward) hemisphere w.r.t. the direction of initial  $e^-$ . U(D): Final state *f* is above (below) the *H*-production plane.

• We constructed 25 combinations in total. For each combination, asymmetry can be constructed as:

$$A^{i} = \frac{\sigma(\mathcal{C}_{i} > 0) - \sigma(\mathcal{C}_{i} < 0)}{\sigma(\mathcal{C}_{i} > 0) + \sigma(\mathcal{C}_{i} < 0)}.$$

 $A^{i}$ 's constructed out of partially integrated cross-sections and hence can be directly propor-

tional to CP(or  $\tilde{T}$ )-odd coupling.

LCWS07, DESY

### **Sensitivity Limits**

Statistical fluctuation in the cross-section and that in an asymmetry:

$$\Delta \sigma = \sqrt{\sigma_{SM}/\mathcal{L} + \epsilon^2 \sigma_{SM}^2} ,$$
$$(\Delta A)^2 = \frac{1 - A_{SM}^2}{\sigma_{SM}\mathcal{L}} + \frac{\epsilon^2}{2}(1 - A_{SM}^2)^2.$$

where  $\sigma_{SM}$  and  $A_{SM}$  are the SM value of cross-section and asymmetry respectively, luminosity  $\mathcal{L} = 500 \text{ fb}^{-1}$  and systematic error  $\epsilon = 0.01$ .

• Limits of sensitivity are obtained by demanding that the contribution from anomalous VVH couplings to the observable be less than the statistical fluctuation in these quantities at 3  $\sigma$  level.

#### **Effect of Beam Polarization:** ZZH case

#### Limits of sensitivity

| Linnolarized Beam              | Polarized Beam                  | Observable               |  |
|--------------------------------|---------------------------------|--------------------------|--|
| Unpolarized Dearn              | I Ulalizeu Dealli               | used                     |  |
| $ \Re(\tilde{b}_z)  \le 0.41$  | $ \Re(\tilde{b}_z)  \le 0.070$  | $A_{UD}^{-,+}(R1;\mu)$   |  |
| $ \Im(\tilde{b}_z)  \le 0.042$ | $ \Im(\tilde{b}_z)  \le 0.0079$ | $A_{FB}^{-,+}(R1;\mu,q)$ |  |

For polarized beams the luminosity of 500 fb<sup>-1</sup> is divided equally among different polarizations.

Biswal, Choudhury, Godbole and Singh, Phys. Rev. D 73, 035001 (2006). This was for unpolarized initial and final states.

Han et al have also observed the improvement for  $\Im(\tilde{b}_z)$ . T. Han and J. Jiang, Phys. Rev. D 63, 096007 (2001).

#### **Effect of Beam Polarization:** *ZZH* **case**

Unpolarized beam with R1-Cut:

$$A_{FB} \propto (\ell_e^2 - r_e^2)$$
$$A_{UD}(\phi_f) \propto (\ell_e^2 - r_e^2)(r_f^2 - \ell_f^2)$$

 $l_e$ : left handed coupling of the electron to the Z-boson.  $\ell_e^2>r_e^2\Rightarrow$  observables constructed using  $|M(-,+)|^2$  are more sensitive.

- Beam polarization gives improvement on limits of both the CP odd couplings ( $\Re(\tilde{b}_z)$ ,  $\Im(\tilde{b}_z)$ ) for R1-Cut.
- Limit on  $\Im(\tilde{b}_z)$  improves upto a factor of 5-6.
- Sensitivity to  $\Re(\tilde{b}_Z)$  is comparable to that obtained with unpolarized beams with R2-cut.

### **Use of** $\tau$ **Polarization:** ZZH **case**

- au polarization can be measured using the decay  $\pi$  energy distribution\*.
- Observables are constructed for  $\tau$ 's of definite helicity state.
- Analysis has been made assuming 100%, 40% and 25% efficiency of detecting final state *τ*'s with a definite helicity state.
  - L:  $\tau^{-}$  is in -ve helicity state,  $\lambda_{\tau} = -1$ .

\* B. K. Bullock, K. Hagiwara and A. D. Martin, Nucl. Phys. B **395** 499 (1993).

\* K. Hagiwara, S. Ishihara, J. Kamoshita and B. A. Kniehl, Eur. Phys. J. C 14, 457 (2000).

\* R. Godbole, M. Guchait and D.P. ROy, Phys. Lett. B 618, 193 (2005).

### Sensitivity of Asymmetries at 3 $\sigma$ level



### **Use of** $\tau$ **Polarization:** ZZH case

| Polarize                      | Unpolarized state $	au$       |                               |                               |
|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 100% eff.                     | % eff. 40% eff. 25% eff.      |                               |                               |
| $ \Im(b_z)  \le 0.064$        | $ \Im(b_z)  \le 0.10$         | $ \Im(b_z)  \le 0.13$         | $ \Im(b_z)  \le 0.23$         |
| $ \Re(\tilde{b}_z)  \le 0.11$ | $ \Re(\tilde{b}_z)  \le 0.18$ | $ \Re(\tilde{b}_z)  \le 0.23$ | $ \Re(\tilde{b}_z)  \le 0.41$ |

Combination: 
$$\mathcal{C'}_3 = \left[ [\vec{P}_e \times \vec{P}_f^+] \cdot \vec{P}_f^- \right] \left[ \vec{P}_e \cdot \vec{P}_f^+ \right]$$

$$A'_{3} = \frac{(FU) + (BD) - (FD) - (BU)}{(FU) + (BD) + (FD) + (BU)} = A_{comb}$$

$$\Im(b_z)$$
 :  $A^L_{comb}$ ;  $\Re(\tilde{b}_z)$  :  $A^L_{UD}$ .

### **Use of** $\tau$ **Polarization:** ZZH case

Unpolarized initial states with R1-Cut:

$$A^{com} \propto (\ell_e^2 + r_e^2)(r_f^2 - \ell_f^2)$$

 $A_{UD}(\phi_f) \propto (\ell_e^2 - r_e^2)(r_f^2 - \ell_f^2)$ 

 $\ell_f^2 > r_f^2 \Rightarrow$  observables for final state  $\tau$  in -ve helicity are more sensitive.

- Improvement on limits of both the  $\tilde{T}$ -odd couplings  $(\Im(b_z) \text{ and } \Re(\tilde{b}_Z))$  with R1-Cut.
- Limit on  $\Im(b_z)$  improves upto a factor of 2 assuming the efficiency of isolating events with  $\tau$ 's of -ve helicity state to be 25%.
- Sensitivity to  $\Re(\tilde{b}_Z)$  is comparable to that obtained with unpolarized states with R2-cut.

#### **Effect of Beam Polarization:** *WWH* **case**

- Only two observables are available. i.e. Total Rate and FB-asymmetry w.r.t. polar angle of Higgs boson.
- No direct probe for  $\tilde{T}$ -odd couplings ( $\Im(b_W), \ \Re(\tilde{b}_W)$ ).
- The RL amplitude gets contribution only from s-channel diagram. Beam polarization may help to decrease the contamination coming from ZZH couplings.

### **Effect of Beam Polarization:** *WWH* **case**

| Individual Limits at 3 $\sigma$ Level |        |             |                |                     |  |  |  |  |
|---------------------------------------|--------|-------------|----------------|---------------------|--|--|--|--|
| Coupling                              |        | Unpolarized | Polarized Beam | Observable          |  |  |  |  |
| $ \Im(b_W) $                          | $\leq$ | 0.62        | 0.31           | $\sigma_{R1}(-, +)$ |  |  |  |  |
| $ \Re(	ilde{b}_W) $                   | $\leq$ | 1.6         | 0.76           | $A_{R1}^{FB}(-, +)$ |  |  |  |  |

#### Simultaneous Limits at 3 $\sigma$ Level

| Coupling            |        | Polarized Beam | Unpolarized |
|---------------------|--------|----------------|-------------|
| $ \Im(b_W) $        | $\leq$ | 0.71           | 1.6         |
| $ \Re(	ilde{b}_W) $ | $\leq$ | 1.7            | 3.2         |

- Beam polarization improves the sensitivity to  $\tilde{T}$ -odd couplings upto a factor of 2.
- $\blacksquare$  Little reduction in contamination from ZZH couplings.

# Going to higher $\sqrt{s}$ ?

Sensitivity to  $\Re(\tilde{b}_Z)$ ,  $\Re(b_W)$  and  $\Re(\tilde{b}_W)$  is expected to increase at higher center of mass energy due to t-channel enhancement. However, using total rate and  $A_{FB}$ , we find

| Coupling          |        | E = 500 GeV | E = 1 TeV |
|-------------------|--------|-------------|-----------|
| $\Re(	ilde{b}_Z)$ | $\leq$ | 0.064       | 0.031     |
| $\Re(b_W)$        | $\leq$ | 0.098       | 0.081     |
| $\Re(	ilde{b}_W)$ | $\leq$ | 0.39        | 0.41      |

Note that No ISR/Beamstrahlung effect have been included here.

- Improvement in sensitivity to  $\Re(\tilde{b}_Z)$  upto a factor 2.
- Little improvement in sensitivity to WWH anomalous couplings.
- No reduction in contamination of WWH from ZZH couplings.

### **Effects of ISR and Beamstrahlung**

- **9** At  $\sqrt{s}$  = 500 GeV :
  - Observables with R1 Cut (selecting Z-pole) yield the best limits.
  - with ISR: 5 10 % enhancement in both SM as well as anomalous contribution to rates (because of decrease in effective  $\sqrt{s}$ ).
  - However, no effect on sensitivity.
- At high  $\sqrt{s}$  :
  - Observables with R2 Cut (de-selecting Z-pole) start playing role in probing VVH couplings.
  - Both ISR and Beamstrahlung effects need to be included.
  - These effects result in 10 15 % decrease in rates (due to the logarithmic enhancement in t-channel rates).
  - Negligible change in sensitivity.
  - Example: At  $\sqrt{s} = 1$  TeV, Up-down asymmetry with R2 Cut (de-select Z-pole),  $|\Re(\tilde{b}_Z)| \leq 0.027, \text{ No ISR \& No Beamst}$

 $|\Re(\tilde{b}_Z)| \leq 0.031$ , With ISR & Beamst

Initial state beam polarization improves the sensitivity to  $\Im(\tilde{b}_z)$  upto a factor of 5-6 \*.

\* Han et al have also observed the improvement for  $\Im(\tilde{b}_z)$ . T. Han and J. Jiang, Phys. Rev. D **63**, 096007 (2001).

- Initial state beam polarization improves the sensitivity to  $\Im(\tilde{b}_z)$  upto a factor of 5-6 \*.
- For W boson fusion process, due to  $\nu$ 's in the final state, direct probe of  $\tilde{T}$  odd couplings is not possible. However, use of initial beam polarization improves the sensitivity to both the  $\tilde{T}$ -odd WWH couplings ( $\Im(b_w)$  and  $\Re(\tilde{b}_w)$ ) upto a factor of 2.

\* Han et al have also observed the improvement for  $\Im(\tilde{b}_z)$ . T. Han and J. Jiang, Phys. Rev. D **63**, 096007 (2001).

- Initial state beam polarization improves the sensitivity to  $\Im(\tilde{b}_z)$  upto a factor of 5-6 \*.
- For W boson fusion process, due to  $\nu$ 's in the final state, direct probe of  $\tilde{T}$  odd couplings is not possible. However, use of initial beam polarization improves the sensitivity to both the  $\tilde{T}$ -odd WWH couplings ( $\Im(b_w)$  and  $\Re(\tilde{b}_w)$ ) upto a factor of 2.
- Solution Use of final state  $\tau$  polarization measurement improves the limit of  $\Im(b_Z)$ .

<sup>\*</sup> Han et al have also observed the improvement for  $\Im(\tilde{b}_z)$ .

T. Han and J. Jiang, Phys. Rev. D 63, 096007 (2001).

- At higher  $\sqrt{s}$ 
  - The sensitivity to  $\Re(\tilde{b}_z)$  improves by a factor 2.
  - Little improvement on limits of WWH couplings.
  - No appreciable reduction in contamination from ZZH couplings.

- At higher  $\sqrt{s}$ 
  - The sensitivity to  $\Re(\tilde{b}_z)$  improves by a factor 2.
  - Little improvement on limits of WWH couplings.
  - No appreciable reduction in contamination from ZZH couplings.
- WWH couplings can be probed better from the process  $e \gamma \longrightarrow \nu WH$  at photon colider because of absence of any contamination from the ZZH couplings.\*

- At higher  $\sqrt{s}$ 
  - The sensitivity to  $\Re(\tilde{b}_z)$  improves by a factor 2.
  - Little improvement on limits of WWH couplings.
  - No appreciable reduction in contamination from ZZH couplings.
- WWH couplings can be probed better from the process  $e \gamma \longrightarrow \nu WH$  at photon colider because of absence of any contamination from the ZZH couplings.\*
- The effects of ISR and Beamstrahlung on the sensitivity are negligible.

- At higher  $\sqrt{s}$ 
  - The sensitivity to  $\Re(\tilde{b}_z)$  improves by a factor 2.
  - Little improvement on limits of WWH couplings.
  - No appreciable reduction in contamination from ZZH couplings.
- WWH couplings can be probed better from the process  $e \gamma \longrightarrow \nu WH$  at photon colider because of absence of any contamination from the ZZH couplings.\*
- The effects of ISR and Beamstrahlung on the sensitivity are negligible.
- Use of Transverse polarization of  $e^+/e^-$  beams to probe the  $\tilde{T}$ -odd couplings needs to be explored.

# Thank you !

### **Higgs Production Rates**





### **Forward-backward asymmetry**

Variable to constrain  $\Im(\tilde{b}_Z)$ .

Correlator:  $C_1 = \vec{P}_e \cdot \vec{P}_f^+$ , CP odd and  $\tilde{T}$  even

$$A_{FB}(\cos \theta_H) = \frac{\sigma(\cos \theta_H > 0) - \sigma(\cos \theta_H < 0)}{\sigma(\cos \theta_H > 0) + \sigma(\cos \theta_H < 0)}.$$

F(B): *H* is in forward (backward) hemisphere w.r.t. the direction of initial  $e^{-}$ .

### **Forward-backward asymmetry**

$$A^{1^{-,+}} = A_{FB}^{-,+}(\cos\theta_H) = \begin{cases} \frac{2.15 \,\Re(\tilde{b}_Z) - 7.21 \,\Im(\tilde{b}_Z)}{1.72} & (e^+e^-) \\ \frac{-7.13 \,\Im(\tilde{b}_Z)}{1.69} & (\mu^+\mu^-) \\ \frac{-109 \,\Im(\tilde{b}_Z)}{26.2} & (q\bar{q}) \end{cases}$$

For final state with  $\mu$  and light quarks,  $3\sigma$  Limit  $\Rightarrow |\Im(\tilde{b}_Z)| \le 0.0079$ 

### **Up-down asymmetry**

Probe for  $\Re(\tilde{b}_Z)$ , Correlator:  $C_2 = [\vec{P}_e \times \vec{P}_f^+] \cdot \vec{P}_f^-$ , CP odd and  $\tilde{T}$  odd  $A_{UD}(\phi) = \frac{\sigma(\sin \phi > 0) - \sigma(\sin \phi < 0)}{\sigma(\sin \phi > 0) + \sigma(\sin \phi < 0)}$ 

U(D): Final state f is above (below) the H-production plane.

This observable requires charge measurement of the final state fermions.

### **Up-down asymmetry**

$$A^{2^{-,+}}(R1;e) = A_{UD}^{-,+}(\phi_{e^{-}}) = \frac{-2.48 \,\Re(\tilde{b}_Z) + 0.35 \,\Im(\tilde{b}_Z)}{1.72}$$
$$A^{2^{-,+}}(R1;\mu) = A_{UD}^{-,+}(\phi_{\mu^{-}}) = \frac{-2.54 \,\Re(\tilde{b}_Z)}{1.69}$$
$$A^{2^{-,+}}(R2;e) = A_{UD}^{-,+R2}(\phi_{e^{-}}) = \frac{5.09 \,\Re(\tilde{b}_Z)}{4.85}$$

For final state  $\mu$  with R1-Cut,  $3\sigma$  Limit  $\Rightarrow |\Re(\tilde{b}_Z)| \le 0.070.$ 

For final state  $e^-$  with R2-Cut,  $3\sigma$  Limit  $\Rightarrow |\Re(\tilde{b}_Z)| \le 0.062.$ 

### **Some of the correlators**

| $\vec{P}_e$ : | $= \vec{p}_{e^-}$ | $-\vec{p}_{e^+}, \qquad \vec{P}_f^- = \vec{p}_f - \vec{p}_{\bar{f}},$                                        | $\vec{P}_f^+$ | $= \vec{p_f}$ | $+ \vec{p}_{ar{f}}$ = | $=-\vec{p}$ | H             |                   |
|---------------|-------------------|--------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------------------|-------------|---------------|-------------------|
|               |                   | Correlator                                                                                                   | C             | P             | CP                    | $\tilde{T}$ | $CP\tilde{T}$ | Probe of          |
|               | $\mathcal{C'}_0$  | 1                                                                                                            | +             | +             | +                     | +           | +             | $a_V,\ \Re(b_V)$  |
|               | $\mathcal{C'}_1$  | $ec{P_e} \cdot ec{P_f}^+$                                                                                    | _             | +             | _                     | +           | —             | $\Im(	ilde{b}_V)$ |
|               | ${\cal C'}_2$     | $[\vec{P}_e \times \vec{P}_f^+] \cdot \vec{P}_f^-$                                                           | +             | —             | _                     | —           | +             | $\Re(	ilde{b}_V)$ |
|               | ${\cal C'}_3$     | $\left[ [\vec{P}_e \times \vec{P}_f^+] \cdot \vec{P}_f^- \right] \left[ \vec{P}_e \cdot \vec{P}_f^+ \right]$ | —             | _             | +                     | _           | _             | $\Im(b_V)$        |

$$A'_{i} = \frac{\sigma(\mathcal{C}'_{i} > 0) - \sigma(\mathcal{C}'_{i} < 0)}{\sigma(\mathcal{C}'_{i} > 0) + \sigma(\mathcal{C}'_{i} < 0)} \qquad \text{for } i \neq 0$$

• We constructed 10 combinations in total.

### **Polar-azimuthal asymmetry**

Correlator:  $\mathcal{C}'_3 = [[\vec{P}_e \times \vec{P}_f^+] \cdot \vec{P}_f^-][\vec{P}_e \cdot \vec{P}_f^+]$ 

$$A'_{3} = \frac{(FU) + (BD) - (FD) - (BU)}{(FU) + (BD) + (FD) + (BU)}$$

CP even and  $\tilde{T}$  odd observable; probe for  $\Im(b_Z)$ .

F(B): *H* is in forward (backward) hemisphere w.r.t. the direction of initial  $e^-$ .

U(D): Final state f is above (below) the H-production plane.

**Limits on**  $\Im(b_Z)$  and  $\Re(\tilde{b}_Z)$ 

$$A_{3}^{\prime L}(R1;\tau) = \frac{1.60 \,\Im(b_{Z})}{0.578} \equiv A^{com}(\tau)$$

$$A_3'^L \Rightarrow |\Im(b_Z)| \le 0.064.$$

#### Up-down asymmetry

$$A_2^{\prime L}(R1;\tau) = A_{UD}^{\prime L}(\phi_{\tau^-}) = \frac{-0.90 \,\Re(\tilde{b}_Z)}{0.578}$$

 $A_{UD}^{\prime L}(\phi_{\tau^{-}})$  with R1-Cut  $\Rightarrow |\Re(\tilde{b}_Z)| \leq 0.11.$