RF Distribution Management

- For a string of 26 cavities, maximize gradient, keeping gradient in cavity i, $\max (G)_{i}<\left(G_{\text {lim }}\right)_{i}$ and total relative head-to-tail energy variation $<10^{-3}$
- To optimize, vary initial beam time $T_{b} \ln (2)$, and some combination of the input power P_{i} and loaded $\mathrm{Q},\left(Q_{\nu}\right)_{i}$ for the i cavities
- For one overall P and individual Q adjustments, the optimized solution has $q=$ $Q / Q_{0}\left(Q_{0}\right.$ is the matched loaded Q) mostly in the range $[1,2]$

Voltage of head and tail of train; $t_{b}=T_{b} / \tau_{0}=1, P / P_{0}=1$

$\left[\tau_{0}=2 Q_{0} / \omega\right]$
[train length $=1.8 \tau_{0}$]

Gradient vs Time for Various Q's

Gradient Optimization

Consider uniform distribution of gradient limits $\left(G_{l i m}\right)_{i}$ from 22 to $34 \mathrm{MV} / \mathrm{m}$ in a 26 cavity rf unit - adjust cavity Q's and/not cavity power (P) to maximize overall gradient while keeping gradient uniform ($<1 \mathrm{e}-3 \mathrm{rms}$) during bunch train

Optimized $1-\langle G\rangle\left\langle\left\langle G_{\text {lim }}\right\rangle\right.$; results for 100 seeds

Case	Not Sorted [\%]	Sorted [\%]
Individual P's and Q's (VTO and Circ)	0.0	0.0
1 P, individual Q's		
(Circ but no VTO)		
P's in pairs, Q's in pairs		
(VTO but no Circ)		
$1 P$, Q's in pairs		
(no VTO, no Circ)		
G set to lowest $G_{\text {lim }}$ (no VTO, no Circ)	2.7 ± 0.4	2.7 ± 0.4

"Sorted" means cavities are arranged in pairs of nearly equal $G_{\text {lim }}$
The number after " \pm " is the rms value

Beam Turn-On Time

$1 p$, individual q's, not sorted: distribution of beam turn-on times

- Remember: beam turn-on time is $T_{b} \ln (2)$, and $t_{b}=T_{b} / \tau_{0}, \tau_{0}=2 Q_{0} / \omega$, with Q_{0} the matched loaded Q at $G=34 \mathrm{MV} / \mathrm{m}$

