SiD: Hadron Calorimetry

Jerry Blazey Northern Illinois University

LCWS07-Hamburg May 31, 2007

Jerry Blazey May 31, 2007 LCWS07 1

HCAL Considerations

- Guiding Principles
 - Optimized for PFA
 - Small radius to improve resolution, control costs
- Baseline
 - Gap size < ~10mm</p>
 - − Barrel: 34 20-mm SS absorbers \rightarrow 4 λ_o
 - Two endcaps
 - Resistive Plate Chambers
- Major questions:
 - Absorber: SS or W?
 - Segmentation: 1cm² through 9cm²?
 - Sampling needed beyond magnet?
 - Active medium?

More on PFA Requirements

- Tracking:
 - Efficiently allow tracking of charged particles through volume.
- Jet Resolution:
 - Sufficient depth such that any loss in the coil or energy measured with degraded resolution (relative to the HCal) in the outer detectors does not significantly impact jet energy resolutions.
 - Sufficient cell size allows true and efficient separation and association of closely spaced energy clusters with the correct tracks.
 - Sufficient sampling so as not to significantly degrade the jet energy resolution via the sampling term.
- Simulations are essential, especially for understanding design parameters and technology capabilities, these efforts are covered in the next talk by John Jaros

Readout Technologies Under Consideration

- Gaseous Readout: fine segmentation, straightforward assembly, inexpensive
 - Resistive Plate Counters
 - Gaseous Electron Multipliers & Micromegas
- Scintillator Readout: high sampling fraction, well understood
 - Solid state photomultipliers (MPPC, SiPM, MRS...)
- Basic approach
 - Demonstrations

- Simulations

Leading to Large Prototypes

Calorimeter for ILC

- Technology
 - Gain large scale, long-term experience with
 - Now Scin/solids readout
 - Next gaseous detectors
 - **Identify critical operational** issues
- **Physics**: •
 - Structure of hadron showers
 - Validation of simulation
 - **Development of particle** flow algorithms
- Running at CERN and FNAL 2006 2008 •
- Numerous CALICE talks this • week

Resistive Plate Chambers

• RPC

- Single Gap
- Coated glass as resistive plates
- Avalanche mode
- Small pads ~1cm²
 - Reduce confusion between tracks and clusters
 - 1 bit resolution preserves single particle resolution

Jerry Blazey May 31, 2007 LCWS07

SiD Members: Argonne National Laboratory

Prototype RPC Results

Parameter space thoroughly Measurement **RPC US RPC Russia** • explored: **Signal characterization** ves yes One or two gas gaps **HV** dependence yes yes - One or two glass plates Single pad efficiencies yes yes High or low resistivity coatings **Geometrical efficiency** yes yes Streamer and avalanche Tests with different yes yes mode gases - Gas mixtures **Mechanical properties** ? yes - Voltage **Multi-pad efficiencies** yes yes **Stability Hit multiplicities** yes yes **Performance metrics** • **Noise rates** investigated with sources, yes yes cosmic rays, and beam: **Rate capability** yes yes **MIP detection efficiency vs** _ Tests in 5 T field no yes **Multiplicity Tests in particle beams** yes yes - Noise rate Long term tests ongoing ongoing Rate capability **Design of larger** ongoing ongoing chamber

SiD Members: Argonne National Laboratory

RPC Slice Test

Gas Electron Multipliers

- Foil separates drift and amplification gap
- PCB for anode ~1x1cm² pixel readout possible
- Uniform, MIP efficient, and fast.
- Digital performance encouraging

NUT TH SUALE

...., Blazey May 31, 2007 LCWS07

SiD Members: University of Texas-Arlington, Washington

Prototype GEM Results

- Small prototype tests similar to those for RPC
 - MIP efficiency ~95%
 - Multiplicity 1.3
- Focus has been on production of chambers with large foils
- Test beam efforts first in Korea and just recently at Fermilab (March-April)
- Efficiency and crosstalk measurement analysis underway (CALICE talk)

GEM Plans

- Participating in slice effort (2007)
- Testing ASIC designs as well
 - Fermilab DHAL
 - SLAC KPIX
- Investigating
 - 3M-company
 30cmx1m foils
 (2007, beam 2008)
 - Thick GEMS (2008)
- And preparing for 1m³ prototype

*Jeri*ry Бıazey May 31, 2007 LCWS07

SiD Members: University of Texas-Arlington, Washington

Micromegas

- Similar to GEMs
- Fine mesh separates 3mm drift and 0.1mm amplification gaps
- Can produce planes in a single lamination process – "bulk micromegas" used for T2K prototypes.

Jerry Blazey May 31, 2007 LCWS07

SiD Members: LAPP-Annecy

Micromega Plans

- First phase:
 - Design and production of small "bulk: prototypes
 - Three 6x16 pad planes built.
 - Study with sources and cosmic rays.
- Second Phase:
 - 80x320 mm² PCB with integrated electronics under design.
 - Sixteen planes will be combined into a 640x640 mm² detector
 - Beam tests and studies

Jerry Blazey May 31, 2007 LCWS07

13

SiD Members: LAPP-Annecy

Scintillator/Solid State

Scintillator/MPPC Results

'azey May 31, 2007 LCWS07

Scin/MPPC Direct Coupling & Plans

Position	CPTA(+/-15%)	Hamamatsu
Center	100%	16.8+/-2.5 PE
Edge	92%	19.3+/-3.0 PE
Corner	71%	Not Measured
Center(no grease)	Not Measured	10.8/-1.5 PE

Direct Coupling

- 2) Construction of integrated Scin/sensor/readout PCBs
- 3) 2007 test beam

Most Probable Values (Coulombs)

-12

e-12

e-12

 (0.9342 ± 0.0010) (0.9302 ± 0.0012) $(0.9320 \pm$

0.0012) (0.9346 ± 0.0010) (0.9351 ± 0.0010)

0.0009 (1.0128 ± 0.0020) (0.9339 ± 0.0012

e-12

è-12

e-12

0.0012

(0.9381 ±

(0.9368 ±

e-12

e-12

e-12

SiPM directly ______ coupled to scintillator

> *Jerry Blazey May 31, 2007 LCWS07*

SiD Members: Northern Illinois University, University of Colorado

SiD HCAL Steps Forward

- June, 2007 (LCWS07) Reports
 - Gaseous: GEM/RPC Slice Test
 - Scintillator/MPPC: CALICE analysis & direct coupling investigations
- Late 2007 Review:
 - Evaluate technology options
 - PFA Simulations report
 - Completion 1st generic engineering study
 - Decision on next prototype step for EDR
 - Full stack or ILC prototype
- Mid-2008 Review:
 - Technology choice or choices for CDR
 - Review progress of prototype projects

Performance Criteria	Technology Issues	Cost
MIP efficiency/pad	Maturity and history	Development costs
Hit multiplicity/pad	Reliability	Assembly and test costs
Uniformity of response across active element	Component availability	Active layer % of total
Ease of calibration	Active layer thickness	Total HCal cost
Track/cluster separability	Smallest element size	
Response to neutrons	Ease of assembly, testing, installation, commissioning	
PFA jet resolution at Z-pole, 200 Gev, 500 GeV	Recovery time after i) hits & ii) significant beam event	
	Rate of discharge (gas)	
	Ageing affects	
	Sensitivity to magnetic field	
	Technical risk	

Closing Comments

- SiD has made progress with baseline HCAL using RPCs.
- Has intentionally left the door open for other possibilities including GEMs & Micromegas & Scin/Solid State Sensors.
- Members are contributing to world-wide R&D efforts, particularly in the framework provided by the highly successful CALICE collaboration.
- Interplay between concepts and R&D efforts will yield more capable detectors.