SiD Calorimetry Studies with Simulation

Calorimetry R&D Review LCWS07 May 31, 2007 John Jaros for Ron Cassell

Motives for Simulation Studies

- Understand the physics requirements for jet energy resolution.
- Quantify the benefits of good jet energy resolution.
- Optimize hcal parameters, prepare for technology choice. Complement PFA studies.
 Build up some intuition
 Sample a larger parameter space

What Jet Energy Resolution do we Need?

Need clean identification of W's, Z's, H's, tops,...

This requires dijet mass resolution \leq few GeV.

$$M_{12}^{2} \approx 2E_{1}E_{2}\left(1-\cos\theta_{12}\right)$$

$$\frac{dM_{12}}{M_{12}} \approx \frac{1}{2}\left[\frac{dE_{1}}{E_{1}} \oplus \frac{dE_{2}}{E_{2}} \oplus \dots\right]$$

Requiring $\sigma\sim\Gamma_{Z}$, sets dM/M = 2.5/92 = 2.7 %.

This requires

 $dE_{jet}/E_{jet} = \sqrt{2} (2.7\%) = 3.8 \%$, independent of E_{jet} . This is roughly comparable to the goal often cited, $dE_{jet}/E_{jet} = 30\%/\sqrt{E(GeV)}$, for $E_{jet} \le 100$ GeV.

Simulation Study Overview

Topics Studied

- Single Neutral Hadron Response
- Realistic SiD Ecal/Hcal Response to Neutral Hadrons
- Jet Energy and Dijet Mass Resolution with Perfect PFA
- Hadron Shower Sizes in RPC and Scint Hcals

Ground Rules

- SiD in Geant4 with LCphys physics models
- "neutral hadron" = $.5 \text{ K}_{\text{L}}^{0}$ + .25 n + .25 nbar
- Detectors: .12 cm thick RPC; .5 cm thick scintillator
- Absorbers: .75 cm W; 2.0 cm Fe; .75 cm detector gap
- Transverse segmentation: 1 x 1 cm²

"Resolution Parameter α_{eff} " is given implicitly by

Resolution vs Energy for Single Neutral Hadrons

Differential Neutral Energy Fraction (normalized)

Digital vs Analogue (Scint only)

Resolution and Absorber Material (RPCs; 5λ)

Resolution vs Absorber Depth

SiD Response to Jets

 Simulate SiD Cal with Perfect Pattern Recognition 1λ Si/W Ecal + 4λ (Fe/W)/(RPC/Scint) Hcal Cross-calibrate Ecal and Hcal Had response Hcal Layers: W 0.074 λ; Fe 0.12 λ.

Neutral Energy Resolution at the Z $(E^{0}_{meas}-E^{0}_{act})/\sqrt{E}$

Total Jet Energy with Perfect Pattern Recognition, i.e. Assign All Cal Energy Correctly

Charged Tracks + Photons + Neutral Hadrons

Jet Energy Resolution vs Jet Energy Perfect Pattern Recognition

Energy Resolution for Neutrals in Jets ZZ 500 Gev

Effect on Dijet Mass Resolution...Small (still assuming perfect pattern reconstruction)

RPC/Scint Hadronic Shower Sizes

Radius of Cylinder about Neutral Hadron Direction (cm)

RPC/Scint Differences for PFA Higher energies

Radius of Cylinder about Neutral Hadron Direction (cm)

Conclusions

Simulation studies are impacting design of SiD Calorimeters

- Fe/Scint Resolution is better than Fe/RPC for single neutral hadrons, and somewhat better for jets.
- Fe or Cu give better resolutions than W or Pb in the hcal.
- >5 λ total calorimeter thickness desirable.
- Digital readout for Fe/Scint, with 1 cm² pixels, better than analogue readout.
- Dijet mass resolution with perfect pattern recognition is comparable for Scint or RPCs.
- Shower sizes, potential confusion, larger in Scint than RPCs.

Sim studies will continue.

- Comparisons and contrasts with PFA studies
- Optimize SiD design