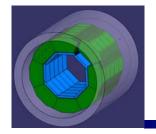
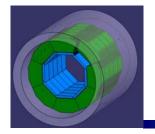


Calorimetry test beam

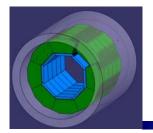
Felix Sefkow



LCWS07, Hamburg, June, 2007

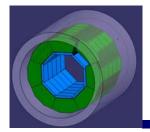

Calorimeter needs

- Wide energy range: 1-100 GeV
- Wide range of particle types: e, μ , π , p (K, n)
- Large statistics
 - For reasons above
 - To study tails
- Eventually: ILC-like beam structure

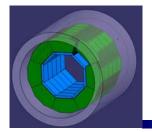

Previous efforts

- CALICE took data at DESY
 - SiW ECAL, ScW ECAL, Sc Fe HCAL commissioning
- at CERN
 - ScW ECAL + Sc Fe HCAL+TCMT
- at FNAL
 - TCMT commissioning, RPC slice tests
- and elsewhere
 - RPCs at Protvino, GEMs in Korea, ...
- Other activities:
 - DREAM at CERN

Observations


- Competition with LHC groups
- Next: competition with SLHC groups
- Competition with Silicon vertexing groups
 - From (S)LHC
 - From ILC (!)
 - They need higher energies (> 100 GeV) (!)
 - We need (high and) also lower energies (PFLOW)
- Do not forget the need of smaller facilities for commissioning an hardware testing
 - Should not interfere with "physics runs"

Future plans


- CALICE:
 - CERN 2007:
 - SiW ECAL + ScFe HCAL+TCMT complete, angle scans
 - FNAL 2008:
 - extend to lower momenta (1 GeV), p-ID
 - All scintillator run: ScW ECAL + ScFe HCAL+TCMT
 - SIW ECAL + RPC-Fe HCAL
 - FNAL 2009:
 - Exchange (some) RPCs against GEMs
 - Exchange Fe against Pb (with Scint)
 - Scint with time-resolved electronics
 - To be scheduled
 - SID ECAL with CALICE HCALs
- DREAM
 - To be scheduled

Tagged neutrals

- Possibility to obtain momentum-tagged neutral particles @ MIPP
- Questions to be addressed:
 - Practical: how long do we need to run?
 - Cannot trigger on neutrals, but only tag offline
 - Purity is small
 - DAQ rate limited: instantaneous, average, buffer depth, spill structure
 - Conceptual:
 - High granularity data will provide detailed diagnostics on shortcomings o simulations (em part, neutron part, correlations,...)
 - Is it really possible to get the simulation of shower development right for piosn and protons and wrog for kaons and neutrons?

Goals

- Particle flow and detector optimization:
 - Validate or reject models, narrow model-induced systematic uncertainties
 - Tune the simulations?
 - We do have contact to GEANT4 representives. But:
 - There are data from the 980s which are not properly modeled
 - Personal remark: if we commit ourselves that we need to *tune* the simulations in order to optimize and design the detector, we may not be ready even if Orbach's oracles come true...