ILC positron production target simulation

Vahagn.Gharibyan DESY 01.06.2007

Positron sources

Simulation tools

Considered polarized processes

Results

Optimal target

Summary

Positron sources

Circularly polarized photons Compton boosted to MeV by accelerated electrons to produce longitudinally polarized positrons

MultiGeV e- hit undulator virtual photons → few MeV e+

GeV e- hit laser real phootons → tens of MeV e+

Simulation tools to deal with polarisation

How much polarisation gain positrons ?

Which target material and thickness ?

Program	Polarisation
	incorporated by

EGS K.Flotmann

Geant4 Zeuthen group

present study is done with polarized Geant3

Polarisation transfer in processes

Pair Creation	$\gamma \rightarrow e + e -$
Compton scattering	$\overrightarrow{\gamma}$ + e- $\overrightarrow{\gamma}$ \overrightarrow{e} -
Photoeffect	$\overrightarrow{\gamma}$ + e- $\rightarrow \overrightarrow{e}$
Annihilation	$\overrightarrow{e^+} e^- \rightarrow \overrightarrow{\gamma}$
Bremsstrahlung	$\overrightarrow{e} + N \rightarrow \overrightarrow{e} + N + \overrightarrow{\gamma}$
Multiple (Coulomb) scattering	$\vec{e} + N \rightarrow \vec{e} + N$
Energy Loss dE/dX	\overrightarrow{e} + Ne \rightarrow \overrightarrow{e} + Ne*

Closer look to the continuous processes

Multiple scattering

At MeV energies average angles are tens of deg. Above 1-2MeV polarisation/magnetic moment follows momentum in the Coulomb field. Is that correct or a crude approximation? For heavy nucleus? E.g. that's not the case in a uniform field.

Energy loss

Dominant at energies lower than the critical Ec. Direction does not change (is that true?) hence the polarisation. Continuous/discrete factorization is valid far from the Ec.

Depolarisation theory/experiment are frozen since 1960s. Additional investigations/theoretical input are welcome (especially for heavy materials).

Results

Undulator Case

Results

Laser Case

Initial Photons

Behind the conversion target

Optimizing target thickness

Positrons behind 0.2X₀ W

Figure of merit

Optimal target thickness

Undulator case

ILC/ LCWS POLarisation 01-06-2007

Optimal target thickness

Laser case

Tungsten

ILC/ LCWS POLarisation 01-06-2007

Titanium

In addition to existing MC programs Geant3 is modified To count the polarisation. For low energies calculation errors could be large, Special simulation tools are necessary.

For the target choice polarized calculations could almost be escaped, its sufficient to maximize the positron yield.

Preferred are heavier target materials (ignoring theoretical uncertainties).