

SOS1 Taskforce: A Collection R&D Results

High-Gradient SC Cavities

Lutz Lilje

GDE

LCWS07 / ILC07 DESY 31.5.2007 **Global Design Effort**

1

Outline

- S0S1 R&D Results
 - **S**0
 - Single-cells
 - Tight-loop
 - Production-like
 - <mark>S</mark>1
 - Recent tests on M6 and M7 at DESY
 - Alternatives
 - Material
 - Surface preparation
 - Cavity geometry

S0S1 'Tight-Loop': Improvement of the Cavity Preparation Process

- Basic assumption
 - Preparation is the critical step
- Main goal:
 - Demonstrate 80% yield in first acceptance test, then 95% with second try
- Tight-loop
 - Test minor variations in the final surface preparation
 - Conduct a dedicated single-cell program
 - Cavity exchange
 - Compare regional preparation setup performance
 - Demonstrate multi-cell handling
 - Demonstrate optimized treatment in a second cycle
- R&D results
 - Single-cells
 - Comparison of final preparation methods (mostly at KEK)
 - Yield already one strong candidate for these processes: 'fresh acid'
 - Multi-cells
 - First tight-loop experiments
 - Two candidate processes: Ultrasound degrease and H2O2

(A) CBP+CP+Anneal+EP(80µm) +HPR+Baking(120C*48hrs) K. Saito et al.

Ave. Eacc=39.118.2MV/m

Scattering:20%, Acceptability@40MV/m(ACD):50%

		IS#2	IS#3	IS#4	IS#5	IS#6	IS#7
EP(80)	Eacc	36.90	31.40	45.10	44.20	48.80	28.30
	Qo	1.53e10	8.66e9	9.07e9	5.38e9	9.64e9	1.94e9

Ave. Eacc=46.7±1.9MV/m

Scattering:4%, Acceptability@40MV/m(ACD):100%

		IS#2	IS#3	IS#4	IS#6	IS#7	CLG#1	
+EP(20+3) +HF*	Eacc	47.07	44.6 7*	47.82	48.6 0*	43.93*	47.90*	
	Qo	1.06e10	0.98e10	0.78e10	0.80e10	1.17e10	1.0e10	

KEK: Single-Cell Comparison K. Saito et al.

		Eace,max [MV/m] / Qo @ Eace,max								Emax	Scatt.	140	Acceptability @
	IS#2	IS#3	IS#4	IS#5	IS#6	IS#7	IS#8	CLG#1	CLG#2	average [MV/m]	(%)	Nd#	[%]
CBP+CP+AN+EP(80)+HPR+ Bake	36.9	31.4	45.1	44.2	48.8	28.3				39.1 ± 8.2	21	Yes	50
	1.53E1 0	8.66E9	9.07E 9	5.38E9	9.64E9	1.94E9							
CBP+CP+AN+ EP(80+3 fresh) +HPR+Bake		42.0	46.1	44.3	34.3	39.3			43.8	41.7 ± 4.4	11	Yes	67
		9.72E9	9.47E 9	1.08E1 0	8.56E9	1.03E1 0			3.46E9				
CBP+CP+AN+ EP(40+3 fresh) +HPR+Bake	43.9						49.2*			46.6 ± 3.7	8	Yes	100
	9.47E9						4.33E9						
+EP(20)+HPR+Bake	47.2	52.2	52.9	31.1	48.9	46.5				. 46.4 ± 8.0	17	Yes	83
	5.98E9	1.51E1 0	5.23E 9	5.21E9	7.56E9	9.03E9							
+EP(20+3 fresh)+HPR +HF+Bake	47.1	44.7	47.8		48.6	43.9		47.9		46.7 ± 1.9	4	Yes	100
	1.06E1 0	9.80E9	7.80E 9		8.00E9	1.17E1 0		1.00E1 0					
+EP(20)+H ₃ O ₃ +HPR+ Bake	52.3			34.1	43.4	40.9				42.7 ± 6.0		Light	50
	1.09E1 0			1.37E1 0	1.39E1 0	3.01E9					18		
+EP(20)+Degreasing (US)+HPR+ Bake	50.1	52.2								51.2 ±1.5 2.9		.9 Light s	100
	7.80 E 10	7.08E9									2.9		
Others Megasonic													

LCWS07 / ILC07 DESY 31.5.2007

ir iic

JLab Multi-Cells

• Second candidate rinse

ΪĹ

- Ultrasound degrease
- All curves but one limited by quench
- Field emission in one test (A6 final test)

S0S1 'Production-like':

Determine the Yield of the Full Production Chain

- Production-like tests
 - Several cavities are treated in the same manner
 - demonstrate full yield of the fabrication and preparation process
 - specify yield in more detail
 - includes cavity fabrication errors
 - New vendors will be tested
- R&D results
 - Ongoing preparation work for the XFEL
 - Update of the statistics
 - KEK first try at new vendor (TESLA-like cavities)
 - US develops also new vendor
 - US results on a qualified vendor
 - Both JLab and Cornell results

Development of Field Emission since Dec 06

- Analysis of final Q(E)-results (if only one Q(E) was taken, this result is in both plots):

- Surface treatment at 'standard' company
- Field emission in first processing
- Only few cells are limited at low field ~21 MV/m
 - Similar to first 2 production runs at TTF few bad cells, but larger number gaussian distribution at higher gradient
- Best cavity at 29 MV/m!
 - 3rd alternative rinse: H_2O_2
- Tighter QC for future production runs will be implemented

Vertical Test Results, Eacc of cells

Before (total~250 μm), after 2nd BP (total~500 μm)

- DESY
 - 4 production batches
 - 24-30 cavities each
 - Reference:
 - 3rd production
 - BCP batch
 - » Production-like with etching as final surface treatment
 - EP batch
 - » R&D effort to demonstrate feasibility of multi-cell EP at KEK and DESY
 - 4th production
 - First 'production-like' effort on EP with multi-cells

• US

- 4 cavities total
 - Statistics low !
 - Several tests per cavity
- Surface treatment
 - Baseline: Horizontal EP at Jlab
 - Alternative: Vertical EP at Cornell
 - Data of tests with etching omitted

'Qualified' Vendor Productions: Best Test Results

LCWS07 / ILC07 DESY 31.5.2007

31.5.2007

Outline

- S0S1 R&D Results
 - **S**0
 - Single-cells
 - Tight-loop
 - Production-like
 - <mark>S</mark>1
 - Recent tests on M6 and M7 at DESY
 - Alternatives
 - Material
 - Surface preparation
 - Cavity geometry

S1 R&D

- For the ILC
 - The acceptance test gradient is specified to 35 MV/m, the operational gradient to 31.5 MV/m.
 - Reflects experience that some performance is lost with the installation into modules e.g. M6
 - All modules are for FLASH
 - Schedule pressure determined final choice of cavities e.g. M6
 - Compromises made for gradient performance
- Module tests
 - Operational gradient is steadily increasing e.g. M4, M5, M7
 - Close agreement between VTA and module performance
 - Systems tests for high gradient operation
 - High power coupler performance
 - Tuners esp. fast tuners for Lorentz-force detuning compensation
 - Thermal cycling
 - Alignment and Vibration studies

LCWS07 / ILC07 DESY 31.5.2007

XFEL assets: Module Test at DESY

- High gradient modules have been assembled
 - For installation in FLASH
- Test in dedicated test stand possible e.g.
 - Cavity performance
 - Thermal cycles
 - Heat loads
 - Coupler conditioning
 - Fast tuner performance
 - (LLRF tests)
- Part of the ongoing preparation work for XFEL

S1 RF Performance: ilr Accelerator Module Operational Gradients

31.5.2007

S1 RF Performance: LINAC vs. Vertical (Cavity Average Gradients)

- Several Modules met expectations
 - E.g. M4, M5, M7
- M6 did not
 - 2 cavities degraded
 - Large spread in gradients in acceptance test due to time pressure for installation into FLASH
- M3* is a very special case
 - Coupler disassembly wrong
 - Repair with nonstandard treatment and no acceptance test on 4 out of 5 'repaired' cavities
 - Time Pressure: Module needed for installation

LCWS07 / ILC07 DESY 31.5.2007

S1/S2 Systems Tests: Cryogenic and Alignment tests

- TTF type 3 module
 - Heat load static (expected value)
 - 40 /80 K: 80 Watt +/- 5 (75 Watt)
 - 4 K: 13 Watt +/- 2 (13 Watt)
 - 2 K: 3.5 Watt +/-1.5 (2.8 Watt)
 - Note: 2 Endcaps lead to higher loss!
 - Module dynamic losses 20 / 22 / 25 MV/m
 - 40 /80 K:20.9 / 22.5 / 24.3 Watt (~3.5 Watt /coupler@25 MV/m)
 - 4 K: <1 / <1 / 1 Watt (0.1 Watt/coupler@25)
 - 2 K: 2.81/ 3.57 / 5.13 Watt (see also Q(E) below)
 - No leaks occurred in 11 thermal cycles
 - Alignment over thermal cycles
 - Vibration measurements

CMTB Module 6 during 11th cool down Status:06-March-07

Plot_hist: TTF.KRYO/EPICS_MKS1MTS/CMTBSLP304_T/VALUE CMTB-Testmodul TTF.KRYO/EPICS_MKS1MTS/CMTBSTC1K80_T/VALUE **K** TTF.KRYO/EPICS_MKS1MTS/CMTBSTC1K40_T/VALUE CMTB-Testmodul TTF.KRYO/EPICS_MKS1MTS/CMTBSTC1K20_T/VALUE **K**] K) 300. CMTB-Testmodul TTF.KRYO/EPICS_MKS1MTS/CMTBSTC1K10_T/VALUE ۷ 250. 200. 150. 100. 50. < 30.12. 2006 28.2. 31.10. 30.11. 29.1. 1 h 30.3.07 Plot (history) LCWS07 / ILC07 DESY 26 **Global Design Effort** 31.5.2007

Cooldown and Warmup data for different cycles:

Horizontal Displacements (only stable T points considered)

LCWS07 / ILC07 DESY 31.5.2007

ilr

İİL

Longitudinal Position: Xray of Coupler Antenna (C7)

(Ansicht Y-Achse)

S1 Systems Test: Coupler Processing

- Done in to steps
 - 1st set of 4 couplers
 - Very tight vacuum interlock thresholts
 - 2nd set of 4 couplers
 - Used 'relaxed' vacuum interlock thresholts
- Very fast processing
 - Due to improved handling after pre-processing at LAL Orsay

D. Kostin

- Comparable to individual cavity high power test results
- M7 preliminary!

20.50.100.200.400.800.1300 us pulses 29.11.2006 Pressure / mb/ nalpowitra position marpowitedum powitydurp marporieste pobugkai tange/pookpike Power I KH ofure 1 dates 7 pforw3 story 4 400 pfore-5 100 phone 6 200 pform? phone 8 0.90 Pesid(e-)/V 0.80 +1 +2 080 +3 0.50 -4 0.40 +5 0.30 e-6 0.20 +7 -8 0.00 6.00 Peak(Light)/V photo 1 5.00photo 2 4.00photo 3 photo 4 300 photo 5 2.00 3 chords photo 7 photo 8 000-15 312-Temp/K 310-£000k1 309-£00k2 0004.3 30E 00044 104 00015 34000 000k7 0004.8

LCWS07 / ILC07 DESY 31.5.2007

M6 and M7 RF conditioning

Comparison with Horizontal Test Coupler Processing

D. Kostin

(R.Paparella – INFN, K. Przygoda – Uni. Lodz, L. Lilje DESY)

- Initial demonstration for each cavity
 - Measure detuning
 - Compensate detuning individually, one after the other
 - Classical compensation
 - 'Second oscillation' compensation
 - No RF feedback
 - In addition
 - Work on piezo diagnostics: Impedance measurement
 - Measure transfer functions from one piezo to another
 - Is there any crosstalk between the cavities?
- Demonstrate compensation on full module for all cavities simultaneously
 - With RF feedback

Tuner Setup

- •Current design in use at FLASH
 - Design by CEA
 - Fast piezo detuning introduce not from beginning

Design by M. Maurier and P. Leconte based of the MACSE tuner design (CEA Saclay)

- Is the backup solution for XFEL

LCWS07 / ILC07 DESY 31.5.2007

700 Piezo OFF 600 Piezo ON 100 0 cav 1 - 35 MV/m cav 2 - 31 MV/m cav 3 - 35 MV/m cav 4 - 33 MV/m cav 6 - 20 MV/m cav 7 - 30 MV/m cav 8 - 23 MV/m

Maximum Lorentz Force detuning compensation results

LCWS07 / ILC07 DESY 31.5.2007

Operation of Full module – Vector-Sum

Conclusion on M6/M7 Tests

- CMTB has proven to be essential tool for thorough linac-independent tests of modules
- M6 and M7 have passed several important tests
 - Coupler processing smooth and short
 - Alignment over several thermal cycles was repeatable (M6)
 - No leaks occurred during cycling
 - Piezo compensation
 - Vibration in warm o.k. (M6 done, M7 underway)
- Nonetheless some issues remain
 - Cavity performance degradation
 - Vibration in cold state need more still more understanding
 - Nonetheless a clear suspect for the ~30 Hz peak has been found
 - M7 results not yet available
- Minor evolutions in design will be tested on M8
 - Important step toward a XFEL prototype test

Outline

- S0S1 R&D Results
 - **S**0
 - Single-cells
 - Tight-loop
 - Production-like
 - <mark>S</mark>1
 - Recent tests on M6 and M7 at DESY
 - Alternatives
 - Material
 - Surface preparation
 - Cavity geometry

XFEL is an Important Asset

- Continuous production of cavities in line of preparation improvements
 - Is a significant part of the cavity data set, as you have seen
- Material issues
 - Scanning for a large batch of material
 - Qualifying more niobium vendors
 - Alternatives: Large-grain material is still an option for the XFEL
- Pre-series will start 2008
 - EP is becoming industry process from autumn
- Design for manufacturing for the cavities
 - Review types of welds and welding procedures
- Quality assurance
 - Defining a reasonable and affordable QC procedure
- Module design and assembly has been reviewed by industry
 - Report is due soon
- (Coupler industrialisation)

XFEL Assets: E.g. Module Transportation

ACCEL

possible solution for XFEL module transports

ACCEL

ACCEL Cryomodule Assembly Study I

S. Bauer, B. Griep, M. Pekeler, H. Vogel, J. Zeutschel ACCEL Instruments GmbH Friedrich-Ebert-Str. 1 51429 Bergisch Gladbach

TTC meeting at FNAL, April 23-26, 2007

transport frame is mounted on truck
truck can be loaded with crane from top

Burneces _____

Industry Study on the Series Production of XFEL Cryomodules

C.Boffo, W. Gärtner, S. Sattler, G. Sikler, U.-M. Tai

CM Transport

lfr.

BABCOCK NOELL

-A lift-off case has to be avoided.

 Bending of the post is still critical, even though distributed over three posts

-A fixture of the GRT at both ends will (widely) solve both problems (-stiffness of the GRT)

10 Mining at 1984, 22 - 26 April 20

Large Grain/Single Crystal Niobium[2]

Ninxia

CBMM

Ingot "D",800 ppm Ta

Ingot "C", 1500 ppm Ta

006 Single

Heraeus

Wah Chang

B

Single Crystal Workshop Araxa, Brasil

LCWS07 / ILC07 DESY 31.5.2007 **Global Design Effort**

40

Option : Large Grain cavities / BCP

Heraeus / Accel (three cavities)

Less fabrication steps (lower cost) no forging-rolling disk from ingot (less material pollution) High RRR ~ 500

(avoid HT to $\nearrow K$)

Probably higher gradients after Electropolishing (coming tests)

LCWS07 / ILC07 DESY 31.5.2007

DESY single crystal cavity 1AC8 build from Heraeus disc by rolling at RWTH, deep drawing and EB welding at ACCEL

Q(Eacc) curve after only 112 µm BCP and in situ baking 120°C for 6 hrs.

> Preparation and RF tests of P.Kneisel, JLab

W. Singer, Single Crystal Nb Technology Workshop, CBMM, Brazil, Oct. 30-Nov. 1, 2006

Outline

- S0S1 R&D Results
 - **S**0
 - Single-cells
 - Tight-loop
 - Production-like
 - <mark>S</mark>1
 - Recent tests on M6 and M7 at DESY
 - Alternatives
 - Material
 - Surface preparation
 - Cavity geometry

- Cornell development
- Possible benefits
- Simpler
 - No large acid barrel, no plumbing, valves, no acid heat exchanger...
- Less expensive to reproduce many systems
- Possible disadvantage
 - more exposure to H
 - 600 800 C, H degassing required

1E+11 F

Baking

- Standard process :
- Ultra High Vacuum 110°C/60h - 120°C/48h - 139°C/12h
- Fast Argon baking :

Argon - 145°C / 3 h successfully tested on EP cavity

Outline

- S0S1 R&D Results
 - **S**0
 - Single-cells
 - Tight-loop
 - Production-like
 - <mark>S</mark>1
 - Recent tests on M6 and M7 at DESY
 - Alternatives
 - Material
 - Surface preparation
 - Cavity geometry

Ave. Eacc=46.7±1.9MV/m

Scattering:4%, Acceptability@40MV/m(ACD):100%

		IS#2	IS#3	IS#4	IS#6	IS#7	CLG#1	
+EP(20+3) +HF*	Eacc	47.07	44.6 7*	47.82	48.6 0*	43.93*	47.90*	
	Qo	1.06e10	0.98e10	0.78e10	0.80e10	1.17e10	1.0e10	

60mm-Aperture Re-Entrant Cavity Best Eacc = 59 MV/m Cornell-KEK Collaboration

H. Padamsee et al.

RE-LR1-3

Cornell 60 mm aperture re-entrant cavity LR1-3 March 14, 2007

Global Design Effort

31.5.2007

S0S1 Plan is on the Move

- Dedicated manpower added to task force
- R&D with many results closely linked to this plan are available already
 - E.g. the XFEL project is an important stepping stone with several important results for the ILC
- Tight-loop started
 - Hot candidates for surface preparation:
 - Fresh acid, H202, Ultrasound degrease
 - Common data sets are being developed
- Production-like
 - Resource-intensive
 - Several batches are underway
 - Facilities are becoming online (Jlab, STF coming next)
- Modules
 - M6 and M7 are important data points
 - Resource-intensive and long lead times
 - Under discussion: Propose to build proof-of-principle across regions
 - Interface to S2 needs work
- S0S1 Plan has become much clearer as resources are known better
 - Scenarios have been developed
 - Pessimistic case: A lot of data available for an educated decision for the EDR
 - Optimistic case: Even though the final full production-like assessment will be later than the EDR a significantly improved data set available on ILC-specific process
- XFEL
 - Several points of connection have been discussed and are critical to the success of the ILC R&D program
- Alternatives are developing rapidly

XFEL is an Important Asset

- Continuous production of cavities in line of preparation improvements
 - XFEL is a significant part of the cavity data set, as you have seen
- Material issues
 - Scanning for a large batch of material
 - Qualifying more niobium vendors
 - Alternatives: Large-grain material is still an option for the XFEL
- Pre-series will start 2008
 - EP is becoming industry process from autumn
- Design for manufacturing for the cavities
 - Review types of welds and welding procedures
- Quality assurance
 - Defining a reasonable and affordable QC procedure
- Module design and assembly has been reviewed by industry
 - Report is due soon
- (Coupler industrialisation)

• Thanks for your attention!

LCWS07 / ILC07 DESY 31.5.2007