

Main Linac EDR Planning: Cavity Fabrication Discussion

W. Funk / H. Carter

Outline

- Outstanding technical questions
 - Gradient
 - Cell Shape
 - Materials
 - Processes
- R&D Priorities

Gradient

- Must regard 35 MV/m in vertical test as fixed for EDR
- Remaining issues must be dealt with to maximize probability of achieving acceptable yield at 35 MV/m
- My recommendation: take this issue off the table – now
- Our primary focus must be to reduce technical risk of achieving 35 MV/m – make changes to increase yield, not gradient
- Clearly, increased yield now, can support increased gradient later – first thing first

Cell Shape

- Select to provide additional assurance of achieving 35 MV/m goal!
- 'TESLA' shape only one to have yielded limiting gradient (~42 MV/m) in 9-cell cavity, but provides only modest margin over target
- 'Low-Loss' shapes → cleaning issues, but raise limiting gradient by >10% (increase in margin over target >60%), if field emission eliminated
- 're-entrant' shapes → very serious processing and cleaning issues; limiting gradient increases of >40% (increase in margin over target >100%) but require substantial process R&D.
- Limited time & resources mean we must choose among our options and argue strongly for TESLA shape, but resulting project technical risk is high.
- My recommendation: LOW LOSS

This decision should be official by October 1, 2007 Decision on which low loss shape by January 1, 2008

Materials

- Standard polycrystalline: supplied material variability still not under control; performance variability, even w/o FE, very poorly understood
- Large grain: qualitative improvement in material uniformity; significant difficulties in fabrication
- Single crystal: ideal, but needs manufacturing development to become available with required dimensions
- My recommendation:

Large grain material

Advantages: Uniformity, Lower R_{res} Phonon peak

• Disadvantage: Poor behavior during deep drawing

 This decision should be taken now, to influence next year's R&D funding plans

Processes

- Welding: chamber pressure determines RRR degradation (Singer: SRF Materials Workshop, FNAL, May 2007).
 Project should determine allowable degradation and let industry select single- or multi-chamber welders based on economics.
 - Resolve by Jan 1, 2008
- Forming: deep drawing traditional, works well with polycrystalline and single crystal, but not with large-grain material; hydroforming offers better reproducibility and may be more favorable for large-grain
 - R&D for coming years should be restricted to these two
- Eddy-Current Scanning: slow, insensitive, needs to be combined with micro-analysis, but best QA tool we have.
 - Might benefit from R&D, can we push this off on Nb vendors?