Impact of beam-beam effects on precision Iuminosity measurements at the ILC

LCWS07, May 30th - June 3rd 2007, Hamburg

EUROTeV

Cécile Rimbault, LAL Orsay

Impact of beam-beam effects on precision luminosity measurements at the ILC

- Principle of luminosity measurement using Bhabha scattering
- Modifications due to beam-beam effects
- Consequences on reachable luminosity precision
- Dependence with the bunch parameters and energy
- Summary and conclusions

Cécile Rimbault, LAL Orsay

Luminosity measurement in the LumiCal using Bhabha scattering at small angles

• Bhabha particles are detected in coincidence in the LumiCal covering a range of 26.2 to 82 mrad.

• $\mathcal{L} = N_{Bh}/\sigma_{Bh}$ from counting rate \rightarrow integrated luminosity ($\Delta \mathcal{L}/\mathcal{L}$: 10⁻³-10⁻⁴)

$$\frac{d\sigma_{Bhabha}}{d\vartheta} \approx \frac{32\pi\alpha^2}{s} \frac{1}{\vartheta^3}$$

Measurement of energy and scattering angle of the Bhabhas → luminosity spectrum reconstruction

Beam-Beam effects on Bhabha scattering

- Bhabhas are produced with BHLUMI, $\sqrt{s} = 500$ GeV, $25 < \theta < 90$ mrad, **ISR included**
- Beam-Beam effect treatment with GUINEA-PIG (Nominal beam param. used for simul.)
 - Modification of initial state: Beamstrahlung $\rightarrow \sqrt{s'} \le \sqrt{s}$, $\Delta \theta_{ini} \ne 0$, $E_{elec} \ne E_{posit}$
 - Modification of final state: Electromagnetic deflections → bhabha angle reduction (~10⁻²mrad) + small energy losses

Consequences on integrated luminosity measurement: Reduction of Bhabha counting rate

First study with the following selection cuts :

 $30 < \theta_{bhabha} < 75 \text{ mrad}$ and $E_{bhabha} > 0.8 E_{beam}$

→ Suppression of Bhabha particles

Due to modification of initial state = beamstrahlung: $(-3.78 \pm 0.04)\%$ Due to modification of final state = EM deflections: $(-0.65 \pm 0.02)\%$ Total BHabha Suppression Effect : $(-4.41 \pm 0.05)\%$

Why is there such an important BHSE ?

Reduction of Bhabha counting rate

Angular cuts optimization

Beamstrahlung \rightarrow enhancement of acollinearity: $<\Delta\theta_0> = 1.27 \text{ mrad}$ $<\Delta\theta_1> = 2.00 \text{ mrad}$ The angular cut should not be symmetric: new **asymmetrical** cuts 30 mrad< θ_{-+} <75 mrad & 26.2 mrad< θ_{+-} <82 mrad *ref. A. Stahl LC-DET-2005-004*

Reduction of Bhabha counting rate

Energy cuts optimization

Beamstrahlung & EM deflections: Bhabha energy reduction + energy asymmetry enhancement \rightarrow use global energy cut: $E_+ + E_- > 0.8\sqrt{s}$

Consequences on integrated luminosity measurement: Reduction of Bhabha counting rate

Suppression of Bhabha particles inside the selection cuts $30 < \theta_{bhabha} < 75$ mrad and $E_{bhabha} > 0.8 E_{beam}$:

Due to modification of initial state = beamstrahlung: $(-3.78 \pm 0.04)\%$ Due to modification of final state = EM deflections: $(-0.65 \pm 0.02)\%$ Total BHabha Suppression Effect : $(-4.41 \pm 0.05)\%$

Suppression of Bhabha particles inside the optimized selection cuts 30 mrad< $\theta_{1,2}$ <75 mrad & 26.2 mrad< $\theta_{2,1}$ <82 mrad and $E_++E_- > 0.8\sqrt{s}$: Due to modification of initial state = beamstrahlung: (-1.03 ± 0.04)% Due to modification of final state = EM deflections: (-0.48 ± 0.02)% Total BHabha Suppression Effect : (-1.51 ± 0.05)%

The bias on integrated luminosity measurement is reduced about a factor 3 with $\frac{8}{8}$ asymmetric angular cuts and global energy cut

Reconstruction of luminosity spectrum from lumical - 1

Experimentally EM deflections have no impact on the reconstructed lumi spectrum

Reconstruction of luminosity spectrum from lumical - 2

reconstructed lumi spectrum reconstructed lumi spectrum with error on angular reconstruction: σ_{θ} =0.13 mrad

Experimental angle resolution $\rightarrow \Delta < x_{rec} > / < x_{rec} > 5 \ 10^{-4}$

Required reconstruction accuracy to control the BHSE

- Modification of beamstrahlung with beam parameters
 - ➔ modification in luminosity spectrum and mean value
 - ➔ modification in BHSE
- To control the bias on integrated lumi at 10⁻³, variations in the rec lumi spectrum need to be known with a precision of 4.10⁻⁴
- Fitting the shapes of the lumi spectra → improvement of sensitivity to beam parameter variation

Sensitivity of BHSE to beam parameters

- BHSE is insensitive to beam offsets, $\Delta_{\!x}$ and $\Delta_{\!y,\!},$ and to longitudinal shifts of the bunch waist
- BHSE is insensitive to the vertical size of the bunch
- BHSE has strong dependence on bunch length, σ_{z} , and horizontal size, σ_{x}

Sensitivity of BHSE to beam sizes

$rac{\Delta\sigma_z}{\sigma_z}$	$\Delta BHSE_{bslung}[\%]$	$\Delta BHSE_{EMdef}[\%]$	$\Delta BHSE[\%]$
20%	-0.40 + 0.25	-0.15 + 0.10	-0.50 + 0.30
10%	-0.20 +0.15	-0.07 + 0.05	-0.25 + 0.15
5%	-0.10 + 0.05	-0.03 + 0.02	-0.15 + 0.05
$rac{\Delta\sigma_x}{\sigma_x}$	$\Delta BHSE_{bslung}[\%]$	$\Delta BHSE_{EMdef}$ [%]	$\Delta BHSE[\%]$
$\frac{\Delta \sigma_x}{\sigma_x}$ 20%	$\begin{array}{c} \Delta BHSE_{bslung}[\%] \\ -1.10 \\ +0.35 \end{array}$	$\begin{array}{c} \Delta BHSE_{EMdef}[\%] \\ -0.10 \\ +0.08 \end{array}$	$\Delta BHSE[\%] -1.20 +0.40$
$\frac{\Delta \sigma_x}{\sigma_x}$ 20% 10%	$\Delta BHSE_{bslung}[\%]$ -1.10 +0.35 -0.40 +0.20	$\begin{array}{c} \Delta BHSE_{EMdef} [\%] \\ -0.10 \\ +0.08 \\ -0.04 \\ +0.04 \end{array}$	$\Delta BHSE[\%]$ -1.20 +0.40 -0.45 +0.25

Sensitivity of BHSE to energy

ILC should enable physics runs initially for energies from the Z boson mass to 500 GeV
 → In this energy range beam-beam effects are strongly modified

Relative Energy lost by Beamstrahlung:

$$\delta \propto \frac{N^2 \gamma}{\sigma_x^2 \sigma_z} \propto \frac{N^2 \gamma^2}{\varepsilon_x^* \beta_x \sigma_z}$$

$$\mathcal{L} = \frac{N^2}{4\pi\sigma_x\sigma_y}H_D = \frac{N^2\gamma}{4\pi\sqrt{\varepsilon_x^*\beta_x\varepsilon_y^*\beta_y}}H_D$$

$$\mathcal{L} \propto \sqrt{\frac{\delta}{\varepsilon_{y}}} \frac{P_{beam}}{E} H_{D}$$

At low energy, EM contribution of BHSE becomes dominant

Sensitivity of BHSE to energy

ILC should enable physics runs initially for energies from the Z boson mass to 500 GeV → In this energy range beam-beam effects are strongly modified

At low energy, EM contribution of BHSE becomes dominant, reaching few 100*10⁻⁴

Summary & Conclusions - 1

- Beam-beam effects on Bhabha scattering increase acollinearity (+0.7 mrad) and energy asymmetry on the Bhabha particles → Need to find a compromise with background suppression cuts
- This leads to a bias on the integrated luminosity measurement of few 10-2
- This BHSE mainly arises from beamstrahlung (for Nominal ILC)
- The reconstructed luminosity spectrum in the LumiCal is almost not modified by EM deflections → beamstrahlung can be measured from the lumi spectrum reconstruction
- Angular resolution induces a relative error of 5 10⁻⁴ in the Luminosity spectrum reconstruction
- To control the bias on luminosity measurement at 10⁻³, we would need to reconstruct luminosity spectrum mean value with a precision of 4 10⁻⁴. But a fitting procedure of the lumi spectrum would enable to reach better precision.

Summary & Conclusions - 2

• Main dependences are from the horizontal and longitudinal sizes of the bunch. A precision of 20% is needed on their knowledge to limit the error on BHSE from EM deflections to about 10⁻³.

 No direct way to control experimentally the bias from EM deflections → Need to use a simulation tool as GUINEA-PIG for further studies. <u>http://flc.web.lal.in2p3.fr/mdi/BBSIM/bbsim.html</u>

• For the GigaZ option, a precision of 10^{-4} is needed for the luminosity, while the bias from EM deflections is >100 x 10^{-4} ... \rightarrow need more complete studies.

• "Impact of beam-beam effects on precision luminosity measurements at ILC", C. Rimbault, P. Bambade, K. Mönig, D. Schulte, EuroTeV-Report-2007-017. To be published.