

International Linear Collider and High Gradient Superconducting RF-Cavities

E.Elsen

FP7 proposal...

ILC-HiGrade

Proposal full title: International Linear Collider and High

Gradient Superconducting RF-Cavities

Proposal acronym: ILC-HiGrade

Type of funding scheme: Combination of Collaborative

Project and Coordination and

Support Actions

Work programme topics addressed: INFRA-2007-2.2.1.33

Participants

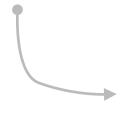

Participant no.	Participant organisation name	Country
1 (Coordinator)	Deutsches Elektronen-Synchrotron (DESY)	Germany
2	John Adams Institute for Accelerator Science (JAI)	UK
3	Commissariat á l'Enérgie Atomique (CEA)	France
4	European Organization for Nuclear Research (CERN)	Switzerland
5	CNRS - Laboratoire de l'accélerateur linéaire (LAL)	France
6	INFN – Laboratorio Acceleratori e Superconduttività Applicata (LASA)	Italy

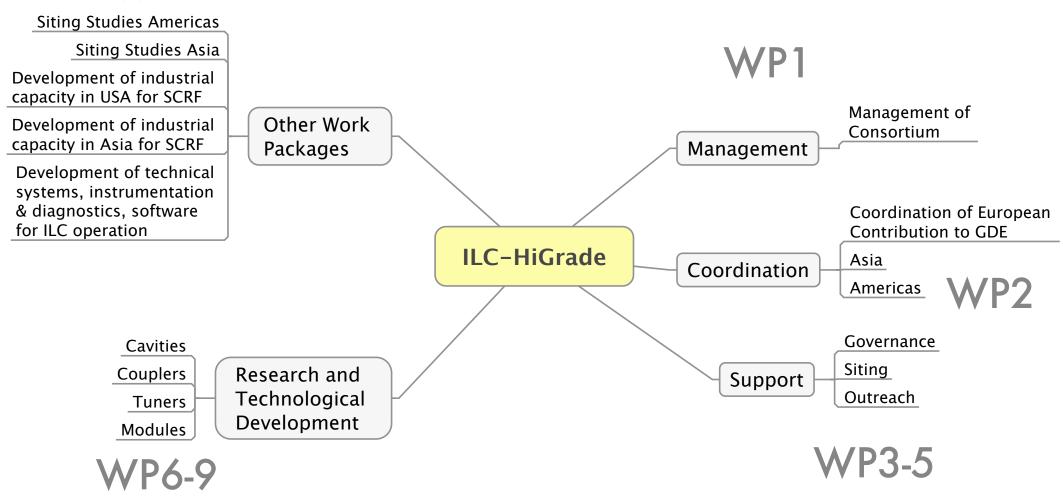
Table 1b – List of other organisations involved in the Preparatory Phase

Organisation name	Country	Description of the Organisation / Specific role or contribution to the preparatory phase
ILC Global	Global	The geographically dispersed organisation for the
Design Effort		design of the International Linear Collider

Objectives

1) There is no doubt that the major technical challenge of the ILC in the preparatory phase is to ensure that the superconducting accelerating structures, currently produced in laboratory conditions in excess of the ILC specification, can be industrially produced with the required reproducibility and field gradient.

Test facility for high gradient cavity and proof of production process.

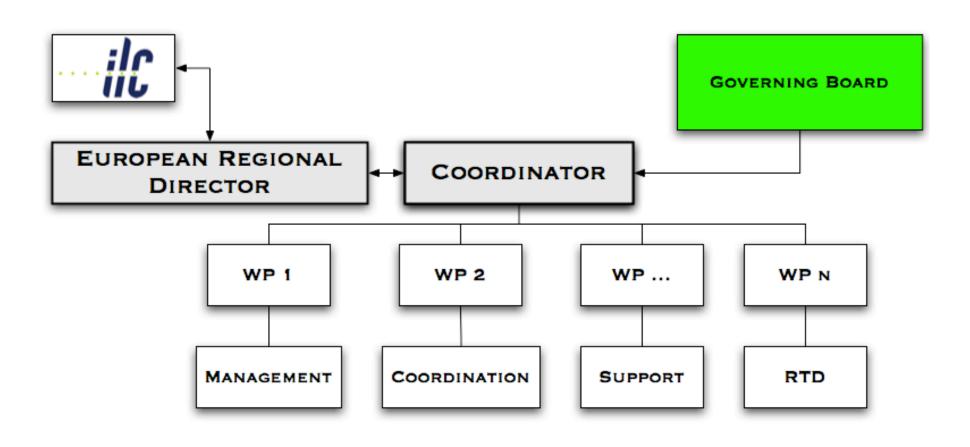

Objectives

2) The second main goal of the preparatory phase is the <u>development</u> of appropriate organisational infrastructure and governance structures to supervise the preparation of the ILC project for submission to stake-holding governments for approval. The ILC is a global project with a well developed international management structure...

Close collaboration with GDE

Overview Work Packages

WP10-14

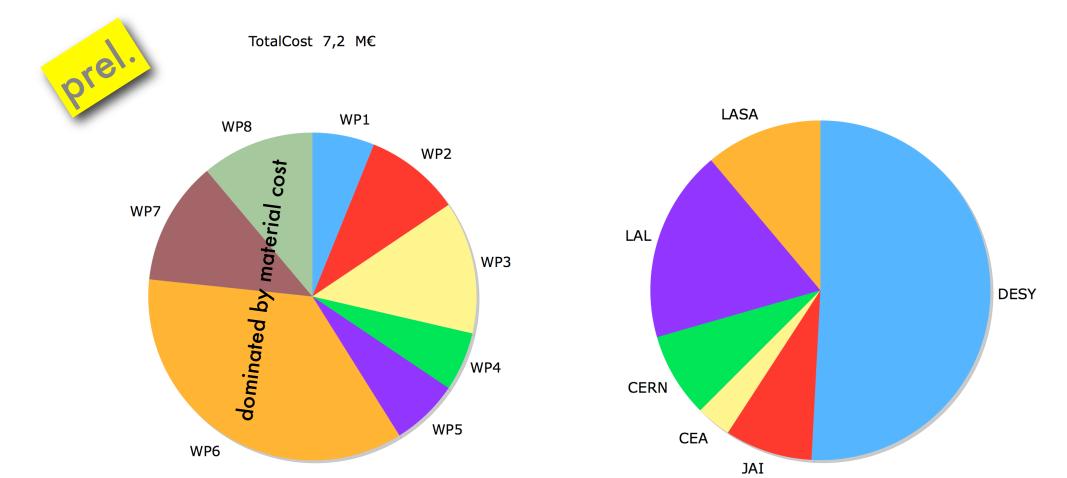

Technical Framework

- 30 fully dressed cavities, TESLA style
 - DESY orders cavities (incl. 150μm EP)
 - Treatment DESY and Saclay
 - LAL: couplers
 - INFN-LASA: tuners + He tank
- note: CERN to engage only later in ILC-SCRF after refurbishing infrastructure

Effect of 30 cavities

- By 2008 basic treatment will be established in world-wide activities (S0 task force)
- Improve yield @ highest gradient by
 - better process control
 - fine polishing (3-20 μ m EP only)
 - <u>rinsing</u> and <u>cleaning</u> (sulphur etc.)
- Show that the current GDE S0 plan is viable
 - Europe is 1 of 3 such global efforts

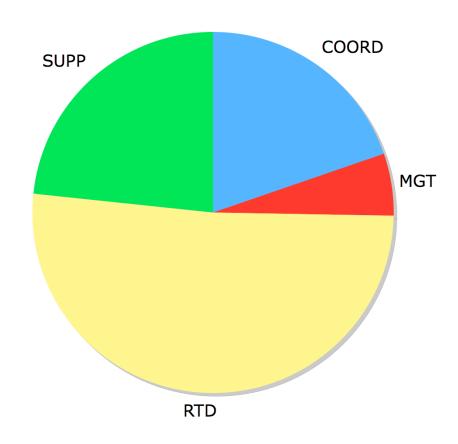
Governance part

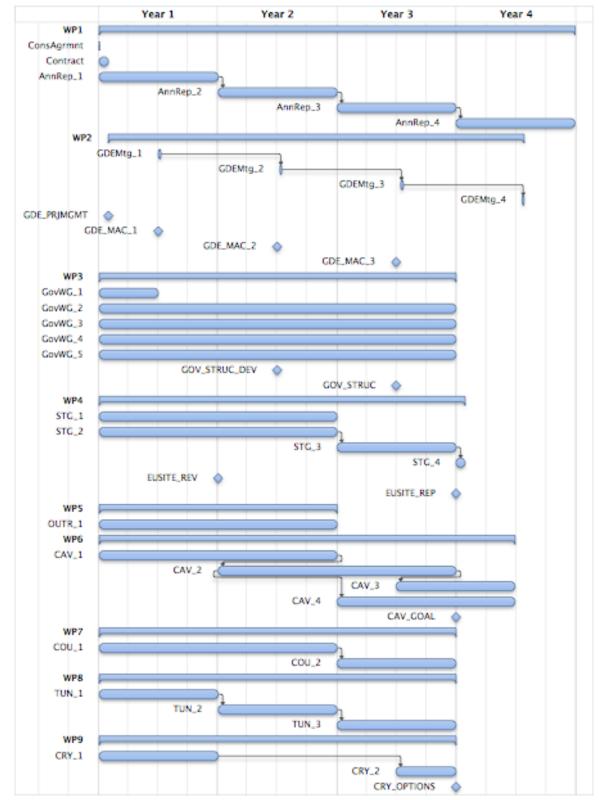


Proposal is fully endorsed by GDE

Staff effort

rel.	MGMT	COORD & SUPP			RTD					
articipant no. / short name	WP1	WP2	WP3	WP4	WP5	WP6	WP7	WP8	WP9	Total person months
DESY	48	24	72	48	24	120			6	342
JAI		38	30		28					96
CEA						20				20
CERN		24	24	6						54
LAL			18	6	24		54			102
LASA								30		30
Total	48	86	144	60	76	140	54	30	6	644


Funding


Funding by Activity

DirectCost 5,2 M€

Milestones & Deliverables

Conclusion

- ILC-HiGrade
 - integral part of the global ILC activities to establish high gradients @ high yield
 - relevant to raise the ILC to the political levels in phase with the technological developments and the completion of the EDR