

The Success of the SM

• During the last decade the SM has been confirmed experimentally beyond reproach.

	Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} / \sigma^{\text{meas}}$ 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768	
m _z [GeV]	91.1875 ± 0.0021	91.1875	
Γ _Z [GeV]	2.4952 ± 0.0023	2.4957	
σ_{had}^0 [nb]	41.540 ± 0.037	41.477	
R _I	20.767 ± 0.025	20.744	
A ^{0,I}	0.01714 ± 0.00095	0.01645	
$A_{ }(P_{\tau})$	0.1465 ± 0.0032	0.1481	
R _b	0.21629 ± 0.00066	0.21586	
R _c	0.1721 ± 0.0030	0.1722	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
A _b	$\textbf{0.923} \pm \textbf{0.020}$	0.935	
A _c	0.670 ± 0.027	0.668	
A _l (SLD)	0.1513 ± 0.0021	0.1481	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.398 ± 0.025	80.374	
Г _w [GeV]	$\textbf{2.140} \pm \textbf{0.060}$	2.091	
m _t [GeV]	170.9 ± 1.8	171.3	-

- However, the dynamics for EWSB still awaits direct experimental verification.
- Current "experimental knowledge" on the SM-like Higgs:
 - Direct searches at LEP II: m_h>114.4 GeV @ 95% CL
 - Fits to precision EW data: m_h<144 GeV @ 95% CL

 The high accuracy achieved (both experimental and theoretical) allows to perform tests at the guantum level:

 \Rightarrow some sensitivity to the EWSB sector (requires careful interpretation)

Data "favors" a light Higgs boson

- Features:
 - Central tracking system in a 2 T solenoidal field:
 - Silicon Tracker ($|\eta|$ <3)
 - Scintillating Fiber Tracker (|η|<1.5)
 - Central and forward preshowers
 - LAr/U calorimetry ($|\eta|$ <4.2)
 - Muon system (3 layers, (|η|<2.0)
- Run IIb upgrades for further improved performance:
 - L1 trigger: CAL, Track and CAL+Track
 - Additional silicon layer (LØ) at R=1.6 cm.

- Multipurpose detector well suited for Higgs search:
 - Lepton (e, μ , τ) identification
 - Jets and MET reconstruction
 - Jet flavor ID via displaced tracks
 and soft-leptons
- Data taking efficiency: 85-90%
- Recorded luminosity to date: ~2.5 fb⁻¹
- Results discussed here: ≤1 fb⁻¹

Gluon Fusion (cont'd)

Expected/Observed Events in 1 fb ⁻¹							
Channel	Signal (m _h =160 GeV)	Background	Data				
ee	0.42	10.3	10				
eμ	0.97	24.4	18				
μμ	0.35	9.8	9				
Total	1.74	44.5	37				

• Cross section limit based on counting experiment after full selection.

• 95%CL limit (m_h=160 GeV): $\sigma_{95} < 4 \sigma_{SM}$ (expected) $\sigma_{95} < 4 \sigma_{SM}$ (observed)

4^{th} generation model excluded for m_h =150-185 GeV

Associated Production (Zh \rightarrow I⁺I⁻bb)

• Experimental signature:

- Two high p_T isolated leptons
- Low MET
- 2 b-jets
- Event selection:
 - 2 isolated e(μ), p_T>15 GeV, |η|<1.1 or 1.5<|η|<2.5 (|η|<2.0)
 - Z mass window cut: ee: 65<m_{ll}<115 GeV μμ: 70<m_{ll}<110 GeV
 - ≥2 jets, p_T>15 GeV, |η|<2.5
 - 2 loose b-tags (4% mistag rate)
- <u>Backgrounds</u>: Z+jets (~80%), top, dibosons
- Main discriminant variable: m_{ii} distribution.
- Multivariate analyses under development.

Associated Production (Zh -> vvbb)

10

- Experimental signature:

 - Large MET
 - 2 b-jets
- Main event selection criteria:
 - Trigger based on large vectorial missing H_T
 - MET>50 GeV
 - ≥2 jets, p_T>20 GeV, |η|<1.1 or 1.4<|η|<2.5 Not back-to-back: Δφ>165 deg
 - -0.1<Asymmetry(MHT,MET)<0.2
 - 2 b-tags: 1 tight + 1 loose b-tag
- <u>Backgrounds</u>:
 - Physics (87%): W+jets (40%), Z+jets, tt
 - Instrumental (13%): QCD multijets (estimated from sideband in data)
- Significant acceptance for Wh \rightarrow Ivbb with undetected e/µ or I= τ (\rightarrow had).
- Main discriminant variable: m_{ii} distribution.
- Multivariate analyses under development.

Associated Production Limits

11

Expected/Observed Events in 1 fb⁻¹

(m_h=115 GeV, 70<m_{ii}<130 GeV)

Process	Ŝignal	Bckg	Data	S/√B
Wh→lvbb(2-tag)	1.45	86.6	91	0.156
Wh→lvbb(1-tag)	1.48	365.2	339	0.077
$Zh/Wh \rightarrow MET+bb$	0.83/0.54	55.3	63	0.184
Zh→llbb	0.37	19.8	17	0.083
Total	4.67	526.9	510	

- Wh combined 95% CL limits (m_h=115 GeV): $\sigma_{95} < 8.1 \sigma_{SM}$ (expected) $\sigma_{95} < 10.6 \sigma_{SM}$ (observed)
- Zh combined 95% CL limits (m_h=115 GeV): $\sigma_{95} < 12.2 \sigma_{SM}$ (expected) $\sigma_{95} < 15.4 \sigma_{SM}$ (observed)
- Different channels have different sensitivity: important to keep separate in the combination.

Higgs Boson(s) Beyond the SM

- The simple SM Higgs mechanism may not be realized in Nature.
- Many extended models of EWSB possess a limit in which they are indistinguishable from the SM ("decoupling limit"): e.g. 2HDM, extra dimensions, composite models, etc.
 - → SM-like Higgs searches provide useful information.
- In particular, within the generic (Type II) 2HDM:
 - Φ_u and Φ_d couple respectively to up- and down-type fermions; tan $\beta = v_d/v_u$.
 - After EWSB, four massive scalars (h⁰,H⁰,H) and one massive pseudo-scalar (A⁰) Most successful of them is SUSY:
 - EWSB typically explained by radiative corrections
 - Requires light h: m_h<135-140 GeV
 - MSSM: described via a handful of additional parameters: $tan\beta$, μ , A and gaugino masses

MSSM Higgs ($\Phi \rightarrow bb$)

14

• Search for Φ +b(b) associated production with Φ →bb.

- Experimental signature:
 - \geq 3 b-tagged jets with p_T>40, 25, 15 GeV.
 - Invariant mass of leading two jets peaks at M_{Φ}
- <u>Backgrounds</u> dominated by heavy flavor-enriched QCD multijets:
 - Shape extracted from 2-tag sample (including kinematic bias from 3rd b-tag)
 - Rate normalized outside the "signal region" (for each point in M_A and tan β) plane.
- Good agreement between data and background model \Rightarrow limits on $\sigma_{\Phi b(b)}BR(\Phi \rightarrow bb)$ set via the CL_s method.
- Interpret cross section limits as upper tanβ limits (currently using tree-level cross sections, i.e. w/o NLO and stop mixing effects – not directly comparable to published 0.3 fb⁻¹ result).
 - Moderate improvement (~15%) over published result despite not being as well optimized.
 - Maximum sensitivity expected for μ <0 and "maximum mixing".

MSSM Higgs ($\Phi \rightarrow \tau^+ \tau^-$)

 Search for Φ→τ⁺τ⁻ complementary to Φ→bb: lower BR but also lower backgrounds.

- Main event selection criteria:
 - One isolated μ , p_T >15 GeV
 - One τ candidate, p_T>15(20) GeV
 - NN_τ>0.9(0.95); ΔR_{μτ}>0.5
 - M_W^{vis}<20 GeV (reduce W+jets bckg)

$$M_{W}^{vis} = \sqrt{2E_{\mu}E_{T}\frac{p_{\mu}}{p_{T,\mu}}(1-\cos\Delta\phi)}$$

- Dominant bckg after selection: $Z \rightarrow \tau^+ \tau^-$ (90%).
- Mass-dependent NN selection for optimal S/B separation (M^{vis} , μ and τ kinematic variables).
- Good agreement between data and bckg model \Rightarrow limits on $\sigma_{\Phi}BR(\Phi \rightarrow \tau^{+}\tau^{-})$ via the CL_s method.
- Interpret cross section limits within MSSM in the m_h^{max} and no-mixing scenarios.

Fermiophobic Higgs

16

- In certain 2HDM, couplings of light Higgs to fermions is suppressed. If sufficiently light, $BR(h_f \rightarrow \gamma \gamma) \sim 1$.
- Search for associated $h_f H$ production via the $h_f W H$ interaction in the multi-photon final state.

$$p\bar{p} \rightarrow h_f H^{\pm} \rightarrow h_f h_f W^{\pm} \rightarrow \gamma \gamma \gamma (\gamma) + X$$

- In 2HDMs, for tan β >1, M_H <200 GeV, M_h<90 GeV: BR(h_f $\rightarrow\gamma\gamma$)~1 and BR(H \rightarrow h_fW)~1.
- Experimental signature: ≥3 γ, E_T>30, 20, 15 GeV with |η|<1.1
- <u>Main background</u>: direct 3γ production (78%); estimated from MC, corrected for the ratio of direct di-photons in data vs. MC.
- Good agreement between data (5 events) and background model (3.5 0.6).

- No apparent structure in the di-photon mass spectrum. Further improve S/B by requiring $p_T(3\gamma)>25$ GeV: observed: 0 events, expected: 1.1 0.2 events $\Rightarrow \sigma(h_fH)<25.3 @ 95\%$ CL.
- Limits presented as exclusion in M_h for different M_H and tan β values.
- Sensitivity depends strongly (weakly) on M_H (tanβ).

Summary

- Wide variety of searches for SM or BSM Higgs with 1 fb⁻¹ show no evidence of signal.
- The accelerator and the DØ detector are performing extremely well.
 - 2.5 fb⁻¹ of data already recorded; expect ~4(8) fb⁻¹ delivered in 2007(2009).
- We continue to learn how to squeeze the last drop of information out of the data.
 - Ongoing work to increase acceptance, add channels not considered before, invariant mass resolution improvements, sophisticated analysis techniques, etc.
 - Goal: continue to beat down \sqrt{L} scaling!
 - Analysis teams are growing!!
 - Very important: the same is happening at CDF!!!
- A very exciting time for the Higgs search at the Tevatron!!!!

Backup

