



## Robust Spin Polarisation Status

#### **Helical Collaboration**

I.R. Bailey, P. Cooke, J.B. Dainton, L.J. Jenner, L.I. Malysheva (University of Liverpool / Cockcroft Institute)

D.P. Barber (DESY / Cockcroft Institute)

P. Schmid (DESY)

G.A. Moortgat-Pick (IPPP, University of Durham / CERN / Cockcroft Institute)

A. Birch, J.A. Clarke, O.B. Malyshev, D.J. Scott (CCLRC ASTeC Daresbury Laboratory / Cockcroft Institute)

E. Baynham, T. Bradshaw, A. Brummit, S. Carr, Y. Ivanyushenkov, A. Lintern, J. Rochford

(CCLRC Rutherford Appleton Laboratory)

### Introduction

- Aims
- Depolarisation
- Software
- Damping Ring
- Linac simulation
- Beam delivery system simulation
- Beam-beam interaction
- What we have done
- What we will do next

#### **Aims**

- Develop reliable software tools that allow the ILC to be optimised for spin polarisation as well as luminosity via full cradle-to-grave simulations.
- Carry out simulations of depolarisation effects in damping rings, beam delivery system, main linac and during bunch-bunch interactions.
- Develop simulations of spin transport through the positron source.
- Why? Sensitivity to new physics and enables background reduction

#### Collaborating with

- T. Hartin (Oxford)
- P. Bambade, C. Rimbault (LAL)
- J. Smith (Cornell)
- S. Riemann, A. Ushakov (DESY)

## Depolarisation

 The spin state of particles within a bunch can change wrt each other by photon emission or classical spin precession through inhomogeneous magnetic fields

$$\delta\theta_{spin} \propto \frac{(g-2)}{2} \gamma \delta\theta_{orbit}$$

- Described by Thomas-Bargmann-Michel-Telegdi equation (TBMT)
- Largest depolarisation effects are expected at the Interaction Points





|                    | Undulator               | Collimator / Targe     | ct Capture Optics        |  |
|--------------------|-------------------------|------------------------|--------------------------|--|
| Physics<br>Process | Electrodynamics         | Standard Model         | T-BMT (spin spread)      |  |
| Packages           | SPECTRA,<br>URGENT      | GEANT4, FLUKA          | ASTRA                    |  |
|                    | Damping ring            | Main Linac /<br>BDS    | Interaction<br>Region    |  |
| Physics<br>Process | T-BMT (spin diffusion)  | T-BMT                  | Bunch-Bunch              |  |
| Packages           | SLICKTRACK,<br>(Merlin) | SLICKTRACK<br>(Merlin) | CAIN2.35<br>(Guinea-Pig) |  |

31st May 2007 LCWS

### **Positron Linac**



- SLICKTRACK code has been updated to include acceleration
- First results confirms that the loss of polarisation is negligible.
- The spin precesses by approx 26° between injection and BDS due to the earth's curvature
- Further investigation and benchmarking (BMAD, Jeff Smith, ILC-NOTE-2007-012).

## Positron Damping Ring

Mean square angular deviation from the equilibrium direction



- Polarisation loss at 5.066 GeV in the damping ring
- After many turns, the spin is not diverging
- See talk by Larissa Malasheva!

# Beam Delivery System



- Slicktrack
- Old 2-mrad beam line selected
- Spin precession≈ 332°
- No noticeable loss of polarisation (0.06%)
- Results in good agreement with BMAD

## **Beam-Beam Interactions**

- Beam-beam interactions are modelled by exchanges of photons between colliding bunches
- Coherent (bulk) effects do not affect polarisation much
- Incoherent (individual) effects do since initial photons have little polarisation

Polarised cross-sections for incoherent Breit-Wheeler pair production added to CAIN:

$$\frac{d\sigma}{d\cos(\theta)d\phi} = \frac{\alpha^2}{4s^2x^2y^2} \sum_{ii',jj'} F_{jj'}^{ii'} \xi_j \xi_{j'} \zeta_i \zeta_i^{'}$$



## Ongoing Beam-Beam theory

- Completed theoretical study of approximation used for anomalous magnetic moment in T-BMT equation implemented in CAIN. This approximation has been shown to be valid!
- Begun first steps towards long term goal of including non-linear transfer maps into SLICKTRACK software package.

| Parameter set | Depolarization $\Delta P_{lw}$ |       |       |
|---------------|--------------------------------|-------|-------|
|               | T-BMT                          | S-T   | total |
| Nominal       | 0.08%                          | 0.02% | 0.10% |
| low Q         | 0.04%                          | 0.02% | 0.06% |
| large Y       | 0.17%                          | 0.02% | 0.19% |
| low P         | 0.15%                          | 0.09% | 0.24% |
| TESLA         | 0.11%                          | 0.03% | 0.14% |

- Theoretical work ongoing into validity of T-BMT equation in strong fields
- Validity of equivalent photon approximation (EPA) for:

incoherent pair production processes higher-order processes macro-particle non-conservation

#### To date...

- Updated SLICKTRACK software to include full non-commuting spin rotations and acceleration
- Simulated spin dynamics in ILC
  - damping rings
  - beam delivery system
  - main linac
- Evaluated theoretical uncertainties in beam-beam interactions at the ILC
- Instigated first polarised pair-production processes into CAIN.

#### Future Plans...

- The motivation for a complete cradle to grave spin tracking simulation has grown as the high energy physics community has increasingly identified the importance of polarised beams as a means to offset any reduction in ILC luminosity.
- This work has been identified as high priority by the Global R&D board.
- We need (LC-ABD2, etc):
  - Further development of SLICKTRACK for full non-linear orbital motion study of BDS and study of main linac.
  - Further development of positron source simulation including effects such as beam jitter and the investigation of spin flip techniques.
  - Assess affect of higher energy spread in damping rings.
  - Theoretical work on beam-beam interactions.
  - Fully integrated software framework.
  - Benchmark vs Merlin.
  - A continued rolling study of the whole machine to allow optimum use of polarisation as a tool for the ILC.