

A 10-bits pipeline ADC dedicated to the VFE Electronics of Si-W Ecal

Laurent Royer, G. Bohner, R. Cornat, P. Gay, J. Lecoq, S. Manen IN2P3/LPC Clermont-Ferrand in Collaboration with LAL (Orsay)

Linear Collider Workshop – Hamburg 2007

The Silicon-Tungsten Ecal

- Sandwich structure of: thin wafers of silicon diodes (~200 µm)
 - & tungsten layers
- High granularity: diode pad size of 5x5 mm²
- High segmentation : ~30 layers
- Embedded VFE electronics

Time considerations

Ecal VFE Electronics: requirements

- Large dynamic range:
 - \rightarrow 0.1 MIP to 3000 MIP \rightarrow 15 bits
- Precision of 8 bits
- Zero suppress on-chip
 - → Auto-trigger on ½ MIP
- Front-end embedded in detector
- 2.10⁸ channels (5x5 mm² pads)
 - → Compactness
- Ultra-low power : 25 µW/ch max.
 - → power pulsing: ON 2ms OFF 198 ms

Ecal VFE Electronics: one channel

General ADC pipeline architecture

- The conversion operation is divided into *m* steps, with *m* the number of bits of the output code. The most significant bits are resolved in the first step, and the least significant bits are resolved in the last step.
- Each step is processed by a dedicated stage; m-bits ADC → m stages
- Each stage converts the input signal into *n* bits (sub-ADC) and delivers an amplified residual voltage to the next stage.
- The Error Correction Logic Block processes the *m n*-bits to deliver the output digital code.

Linearity mainly affected by the comparator offset and the precision of the amplifier gain.

Why two bits per stage?

Algorithmic simulations
Integral NonLinearity (INL)

Arch. w/ a resolution of 2 bits per stage but the combination "11" avoided → 1.5 bit /stage

Amplifier and comparator

- Amplifier
- Fully differential and rail-to-rail
- Gain-Bandwidth product: 50 MHz
- Power consumption: 1.9 mW /5V

Comparator

- Sensitivity = input noise : < 280 μV (95% C.L.)</p>
- Offset: (20 ± 9) mV (± 68% C.L.)
- Power consumption: 815 μW @ 4 MHz

A 10-bits ADC prototype

Characteristics:

- 10 bits → 10 stages
- 1.5bit/stage and differential architecture
- Technology: Austriamicrosystems CMOS 0.35µm
- Power supply: 5V (digital: 2.5V)
- Clock (sampling) frequency: 4 MHz (MS/s)

■ Die area: 1.2 mm²

Measurement setup

Test Bench:

- Generic board for ADC tests
- Analogue signal generator: DAC 16 bits (DAC8830)
- PC/LabView Slow Control through USB interface
- Data processing with Scilab package

Linearity performance (1)

The Integral Non-Linearity (INL) refers to the deviation, in LSB, of each individual output code from the ideal transfert-function value.

Linearity performance (2)

This Differential Non-Linearity (DNL) is defined as the difference between an actual step width and the ideal value of one LSB.

LCWS - Hamburg - June 2007

-1.5

Noise performance

400

600

Code

800

Measured noise (including the setup noise): < 0.5 LSB @ 68% C.L.

200

- Dynamic consumption : 35 mW (clock @ 4MHz)
- Conversion time: 1 clock period = 250ns
- Assuming:
 - 128 channels per VFE chip
 - 1 ADC per chip
 - 5 events max per channel (memory depth)
 - **▶** With power cycling, the integrated consumption per channel of the A/D conversion can be estimated by:

$$\frac{Pw \times Tconv \times Mem.}{Time \ cycle} = \frac{35mW \times 250ns \times 5}{200ms} = 0.22 \ \mu\text{W/ch}$$

with Pw: power cons. of one channel

Tconv: time for one conversion

Mem: memory depth of one channel

Time_cycle: time between two trains

The ON-setting time and pipeline latency effects can be neglected.

Summary

ADC requirements

ADC measured performance

• 10 bits ADC precision

- ADC: precision of 10 bits
 - INL:-0.70/+0.85 LSB
 - DNL: -0.46/+0.56 LSB
- Noise: <0.5 LSB

Compactness

- One pipeline ADC per chip (128 ch)
- Die area of 1.2mm² for 128 ch.

Total cons. of VFE:25 μW/ch max

- Power cons.: 0.22μW/ch
- $\Rightarrow \approx 1\%$ total power of one channel

- Foreseen improvements:
 - Reduce power supply voltage (power cons.) from 5V to 3.5V (from 35mW to 25mW)
 - Increase precision to 12 bits in order to have only a bi-gain shaping
 - Implement and test the power pulsing

A Pipeline Analog-to-Digital Converter (ADC) dedicated to the Ecal Very Front-End Electronics of ILC

Linear Collider Workshop – Hamburg 2007

Amplifier & comparator performance

Performance of pipeline ADCs

Amplifier and comparator

- Amplifier
- Fully differential and rail-to-rail
- Gain-Bandwidth product: 50 MHz
- Power consumption: 1.9 mW /5V

Comparator

- Sensitivity = input noise : < 280 μV (95% C.L.)</p>
- Offset: (20 ± 9) mV (± 68% C.L.)
- Power consumption: 815 μW @ 4 MHz

The Silicon-Tungsten Ecal

- Measure photons and hadrons
- High granularity : typ < 1 cm2
- High segmentation : ~30 layers
- Moderate energy resolution (10%/ \sqrt{E})

1.5 bit/stage pipeline architecture

- 2 comparators and one amplifier per stage required
- 2 threshold voltages and 3 reference voltages required

