

Coupler Kick

Igor Zagorodnov and Martin Dohlus ILC Workshop, DESY 31 May, 2007

Outlook

- Coupler kick due to short-range wakefield (coupler wake)
- Coupler kick due to asymmetry of the external RF field (coupler RF kick)
- Comparison to the kick of the TESLA cavity (cavity wake)

Notation and Definitions

 $\lambda(s)$ – Gaussian bunch with rms width σ

$$k_{\perp} = \langle W \rangle = \int W(s)\lambda(s)ds - \text{kick factor}$$

$$k_{\perp}^{\text{rms}} = \left\langle (W - k_{\perp})^2 \right\rangle^{0.5} = \left[\int \left(W(s) - k_{\perp} \right)^2 \lambda(s)ds \right]^{0.5} - \text{rms kick factor}$$
It gives an estimation for the head-tail difference in the kick

It gives an estimation for the head-tail difference in the kick (banana shape)

The picture from R. Wanzenberg, Review of beam dynamics ..., Linac Conference, 1996

Accuracy estimation / code benchmarking

1. Zagorodnov I, Weiland T., *TE/TM Field Solver for Particle Beam Simulations without Numerical Cherenkov Radiation//* Physical Review – STAB,8, **2005**.

2. Zagorodnov I., *Indirect Methods for Wake Potential Integration //* Physical Review -STAB, 9, **2006.**

3. Bane K.L.F, Stupakov G., Zagorodnov I., *Impedance Calculations of Non-Axisymmetric Transitions Using the Optical Approximation//* Physical Review - STAB, submitted

upstream coupler

downstream couplers

Wake kick near to the axis

$$\mathbf{k}_{\perp}(x, y) = \begin{pmatrix} -0.0142 \\ -0.0095 \end{pmatrix} + \begin{pmatrix} 1.02 & 1.15 \\ 1.15 & 0.07 \end{pmatrix} \begin{pmatrix} x[m] \\ y[m] \end{pmatrix} \begin{bmatrix} \frac{kV}{nC} \end{bmatrix}$$

x

$$\mathbf{k}_{\perp}(x, y) = \begin{pmatrix} -0.0069 \\ -0.0094 \end{pmatrix} + \begin{pmatrix} 3.2 & -1.1 \\ -1.1 & -1.0 \end{pmatrix} \begin{pmatrix} x[m] \\ y[m] \end{pmatrix} \begin{bmatrix} \frac{kV}{nC} \end{bmatrix}$$

$$k_{\perp}(x, y)$$

$$y[mm] \quad 3 \\ 2 \\ 1 \\ 0 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ 0 \\ 2 \\ x[mm]$$

How to compensate the wake kick on the axis?

RF kick

upstream coupler x/mm =... y/mm=...

M. Dohlus, Field asymmetries & kicks, 2004. http://www.desy.de/~dohlus $10^3 \cdot \text{xoff} = 0$ $10^3 \cdot y \circ ff = 2$ /2004/2004.09.holgers_se Vx = -50.479 + 6.799iminar/asym&kick_sep2004. 10^{-б} pdf Vy = -42.924 - 2.275i10 $10^3 \cdot y \circ ff = 0$ $10^3 \cdot \text{xoff} = -2$ $10^3 \cdot \text{yoff} = 0$ $10^3 \cdot \text{xoff} = 0$ $10^3 \cdot \text{xoff} = 2$ $10^3 \cdot \text{yoff} = 0$ Vx Vx Vx = -59.102 + 8.202i= -57.112 + 6.649i $= -54.754 \pm 5.382i$ 10⁻⁶ 10⁻⁶ 10⁻⁶ Vy Vy Vy = -48.701 - 3.873i= -41.413 - 3.469i = -35.112 - 3.051i10⁻⁶ 10⁻⁶ 10^{— б} $10^3 \cdot y \circ ff = -2$ $10^3 \cdot \text{xoff} = 0$ Vx = -64.117 + 6.215i10⁻⁶

= -38.919 - 4.676i

TESLA Cavity in Cryomodule

Fig1. Geometry of the TESLA cryomodule.

The TESLA linac consists of a long chain of cryomodules. The cryomodule of total length 12 m contains 8 cavities and 9 bellows as shown in Fig.1. The iris radius is 35 mm and beam tubes radius is 39 mm.

$$w_{\perp}(s) = 10^{3} \left(1 - \left(1 + \sqrt{\frac{s}{s_{1}}} \right) \exp\left(-\sqrt{\frac{s}{s_{1}}} \right) \right) \left[\frac{V}{pC \cdot m \cdot module} \right]$$

where $s_0 = 1.74 \cdot 10^{-3}$ and $s_1 = 0.92 \cdot 10^{-3}$

Zagorodnov I., Weiland T., *The Short-Range Transverse Wakefields in TESLA Accelerating Structure//* Proceedings of PAC 2003 Conference, USA, **2003**.

Head-Tail Kick (ILC)

Head-Tail Kick (ILC)

$$k_{\perp}^{rms} \approx k_{\perp}^{0,rms} + k_{\perp}^{1,rms} r$$
$$k_{\perp}^{0,rms} \left[\frac{V}{nC^* cavity} \right]$$

RMS bunch length,μm	Coupler wake	Coupler RF field	Cavity tilt by 1 mrad (on crest / 10 grad)
300	Design= 16.4 New=1.4	7.3	0.35/10.7

$$k_{\perp}^{1,rms} \left[\frac{V}{nC*mm*cavity} \right]$$

RMS bunch length,μm	Coupler wake	Coupler RF field	Cavity wake
300	Design= 2.5 New= 1.3	0.34	6.3

European XFEL Project

http://www.desy.de/xfel-beam/index.html

Coupler RF kick is the most important. It can be reduced by alternative direction orientation of couplers.

r [mm]

Effect of new HOM couplers orientation

Injector

Coupler RF kick is the most important. It can be reduced by alternative direction orientation of couplers.

Bunch Compressor

Main Linac

Coupler wake kick is the most important. It can be reduced with the new orientation of HOM couplers.

Head-Tail Kick (rms kick)

$$k_{\perp}^{rms} \approx k_{\perp}^{0,rms} + k_{\perp}^{1,rms}r$$

$$k_{\perp}^{0,rms} \left[\frac{V}{nC * cavity} \right]$$

RMS bunch	Coupler	Coupler RF field,	Cavity tilt by	Cavity wake
length σ ,	wake,	Ο(σ)	1 mrad	
μm	O(1)		(on crest / 10 grad)	
2400		58	23 / 88	
120	Design= 16.4	2.9	0.06 / 4	0
25	New=1.4	0.6	0.002 / 0.9	

Head-Tail Kick (rms kick)

$$k_{\perp}^{rms} \approx k_{\perp}^{0,rms} + k_{\perp}^{1,rms}r$$

$$k_{\perp}^{1,rms} \left[\frac{V}{nC*mm*cavity} \right]$$

RMS bunch length,	Coupler wake,	Coupler RF field,	Cavity wake,
μm	O (1)	Ο(σ)	Ο(σ)
2400		2.7	21.6
120	Design= 2.5	0.14	3.1
25	New= 1.3	0.03	0.77

Head-Tail Kick (rms kick)

1. Transverse Coupler Wake is capacitive (integral from bunch shape)

$$\mathbf{k}_{\perp} \approx \mathbf{k}_{\perp}^{0} + \mathbf{k}_{\perp}^{1} \mathbf{r} \qquad k_{\perp}^{0, rms} \approx \frac{1}{\sqrt{3}} \left\| \mathbf{k}_{\perp}^{0} \right\| \qquad k_{\perp}^{1, rms} \approx \frac{1}{\sqrt{3}} \left\| \mathbf{k}_{\perp}^{1} \right\|$$

2. RF Coupler Kick (on crest)

$$V_{x}(s) = \operatorname{Re}(Vx \cdot V_{z} \cdot e^{-iks}) \qquad V_{z} = 15 \text{MV} \quad k = 2\pi \frac{1.5 \text{GHZ}}{c}$$
$$k_{\perp}^{0,rms} \approx \operatorname{Im}(Vx \cdot V_{z}) \cdot k \cdot \sigma$$

 $12CU_7$

3. Cavity tilt by angle α

$$V(s) = \operatorname{Re}(0.5\alpha V_{z} \cdot e^{-i(ks - \varphi_{0})})$$
$$k_{\perp}^{0,rms} \approx \left(\int \left[\operatorname{Re}V(s) - \left\langle \operatorname{Re}V(s) \right\rangle \right]^{2} \lambda(s) ds \right)^{1/2}$$

Conclusion

> The coupler **RF** kick is a main effect in the injector. It can be compensated by an alternative direction orientation of couplers.

> The coupler wake kick is a main effect after the 1st bunch compressor in XFEL project and for ILC bunch length of 300 μ m. Rotation of the HOM couplers by 90 degree allows to reduce the kick by factor 12.

> It is possible that the wake is overestimated. The cavity irises have smaller radius than the pipe. It could make the coupler kick weaker. The full structure modeling is desired.