Inclusion of NLO results in WHIZARD

based on hep-ph/0607127, hep-ph/0610401

Tania Robens in collaboration with W. Kilian, J. Reuter

RWTH Aachen

LCWS 2007, DESY Hamburg



Appendix

- Introduction and Motivation
  - Charginos and Neutralinos in the MSSM

Inclusion of NLO results in WHIZARD

- Experimental accuracy and NLO results
- Inclusion of NLO results in WHIZARD
  - Implementation in WHIZARD
  - Photons: fixed order vs resummation
  - Results
- Summary and Outlook



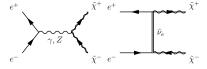
Appendix

### Chargino and Neutralino sector: Reconstruction of SUSY parameters

- Charginos  $\widetilde{\chi}_{i}^{\pm}$  and Neutralinos  $\widetilde{\chi}_{i}^{0}$ : superpositions of gauge and Higgs boson superpartners
- Chargino / Neutralino sector:

$$\tan \beta$$
,  $\mu$  (Higgs sector),  $M_1$ ,  $M_2$ (soft breaking terms)

can be reconstructed from


masses of 
$$\widetilde{\chi}_1^\pm,~\widetilde{\chi}_2^\pm,~\widetilde{\chi}_1^0,~2~\sigma$$
 in the  $\widetilde{\chi}^\pm$  sector

(Choi ea 98, 00, 01)

- low-scale parameters + evolution to high scales (RGEs): ⇒ hint at SUSY breaking mechanism (Blair ea, 02)
- requires high precision in ew-scale parameter determination

### Chargino production at the ILC

- Charginos: (typically) light in the MSSM  $\Rightarrow$  easily accessible at colliders (ILC/ LHC)  $\Leftarrow$
- LO production at the ILC:



decays: typically long decay chains

e.g. 
$$e^+\,e^-\,
ightarrow\,\widetilde\chi_1^+\,\widetilde\chi_1^-\,
ightarrow\,\widetilde au_1^+\, ilde au_1^-\,
u_ au\,ar
u_ au\,ar
u_ au\,(
ightarrow\, au^+\, au^-\,
u_ au\,ar
u_ au\,\widetilde\chi_1^0\,\widetilde\chi_1^0)$$

Outline

# next-to-leading-order (NLO) corrections

- experimental errors: obtained from simulation studies (LHC/ ILC study, Weiglein ea, 04)
- generate "experimental data" with known SUSY input parameters
- errors: combination of statistical and systematic errors

combined LHC + ILC: \%

same  $\ensuremath{\mathcal{O}}$  errors from fitting routines determining SUSY parameters

- Theory:
  - Full NLO SUSY corrections for  $\sigma(ee \to \widetilde{\chi} \widetilde{\chi})$  at ILC: in the % regime (Fritzsche ea 04, Öller ea 04, 05)
  - ⇒ include complete NLO contributions in analyses ←



Outline

# Experimental accuracy and theoretical next-to-leading-order (NLO) corrections

- experimental errors: obtained from simulation studies (LHC/ ILC study, Weiglein ea, 04)
- generate "experimental data" with known SUSY input parameters
- errors: combination of statistical and systematic errors

same  $\mathcal O$  errors from fitting routines determining SUSY parameters

Theory:

Full NLO SUSY corrections for  $\sigma(ee \rightarrow \widetilde{\chi} \widetilde{\chi})$  at ILC:

in the % regime (Fritzsche ea 04, Öller ea 04, 05)

 $\Rightarrow$  include complete NLO contributions in analyses $\Leftarrow$ 

### From $\sigma_{tot}$ to Monte Carlo event generators

- experiments: see final decay products
- need to compare with simulated event samples
- also: important irreducible background effects (e.g. Hagiwara ea, 05)
  - → talk by Jürgen Reuter
    - ⇒ include NLO results in Monte Carlo Generators ←
- MC Generator WHIZARD (W. Kilian, LC-TOOL-2001-039):
- so far: LO Monte Carlo Event Generator for  $2 \rightarrow n$  particle
- includes various physical models (SM, MSSM, non-commutative

Implementation in WHIZARD

### From $\sigma_{\rm tot}$ to Monte Carlo event generators

- experiments: see final decay products
- need to compare with simulated event samples
- also: important irreducible background effects
   (e.g. Hagiwara ea, 05)
  - → talk by Jürgen Reuter
    - ⇒ include NLO results in Monte Carlo Generators ←
- MC Generator WHIZARD (W. Kilian, LC-TOOL-2001-039):
- so far: LO Monte Carlo Event Generator for  $2 \rightarrow n$  particle processes
- includes various physical models (SM, MSSM, non-commutative geometry, little Higgs models), initial state radiation, parton shower models,...

### NLO cross section contributions

#### $\sigma_{\text{tot}}$ contributions and dependencies:

- $\bullet$   $\sigma_{\mathsf{born}}$
- virtual  $\mathcal{O}(\alpha)$  corrections:  $\sigma_{\mathsf{virt}}(\lambda)$
- emission of soft/ hard collinear/ hard non-collinear photons:

$$\sigma_{\mathsf{soft}}(\Delta E_{\gamma}, \lambda) + \sigma_{\mathsf{hc}}(\Delta E_{\gamma}, \Delta \theta_{\gamma}) + \sigma_{2 \to 3}(\Delta E_{\gamma}, \Delta \theta_{\gamma})$$

• higher order initial state radiation:  $\sigma_{\rm ISR} - \sigma_{\rm ISR}^{\mathcal{O}(\alpha)}(Q)$  $\lambda$ : photon mass ,  $\Delta E_{\gamma}$ : soft cut ,  $\Delta \theta_{\gamma}$ : collinear angle

Summary and Outlook

### Including FormCalc $\mathcal{O}(\alpha)$ results in WHIZARD

• use FeynArts / FormCalc generated code for

$$\mathcal{M}_{\text{virt}}(\lambda)$$
 : virtual corrections  $f_s(\Delta E_{\gamma}, \lambda)$  : soft photon factor

$$(\mathcal{M}_{born} : born contribution)$$

• fixed order: integrate over effective matrix element:

$$|\mathcal{M}_{\mathsf{eff}}|^2(\Delta E_\gamma) \,=\, (1 + \mathit{f}_{\mathsf{s}}(\Delta E_\gamma,\,\lambda))\,|\mathcal{M}_{\mathsf{born}}|^2 \,+\, 2\,\mathsf{Re}(\mathcal{M}_{\mathsf{born}}\,\mathcal{M}^*_{\mathsf{virt}}(\lambda))$$

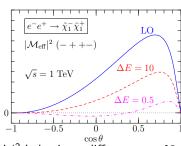
$$\Delta E_{\gamma}$$
: soft photon cut,  $\lambda$ : photon mass

• in practice: create library from FormCalc code, link this to WHIZARD



LCWS 2007, DESY Hamburg

# (1): Fixed $\mathcal{O}(\alpha)$ contributions


- integrate  $|\mathcal{M}_{eff}|^2$  (born/ virtual/ soft photonic part)
- hard collinear photons: collinear approximation  $(\mathcal{M}_{born})$
- hard non-collinear photons: explicit  $e e \rightarrow \widetilde{\chi} \widetilde{\chi} \gamma$  process  $(\mathcal{M}_{\rm born}^{2\to3})$
- corresponds to analytic results in literature (Fritzsche ea/ Öller ea)

## (1): Fixed $\mathcal{O}(\alpha)$ contributions

- integrate  $|\mathcal{M}_{\text{eff}}|^2$  (born/virtual/soft photonic part)
- + hard collinear photons: collinear approximation  $(\mathcal{M}_{born})$
- + hard non-collinear photons: explicit  $e e \rightarrow \widetilde{\chi} \widetilde{\chi} \gamma$  process  $(\mathcal{M}_{\rm born}^{2\to3})$
- corresponds to analytic results in literature (Fritzsche ea/ Öller ea)

problem: too low energy cuts:  $|\mathcal{M}_{\rm eff}|^2 < 0$ ⇒ use negative weights or set  $\mathcal{M}_{\text{eff}} = 0$ 

event generator specific problem  $(\sigma_{\rm tot} \geq 0)$ 



 $\mathcal{M}^2$  behaviour, different cuts [GeV]

Photons: fixed order vs resummation

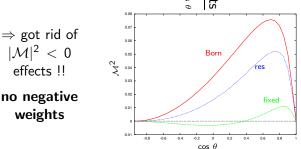
## (2): Resumming leading logs to all orders

• idea: subtract  $\mathcal{O}(\alpha)$  soft + virtual collinear contributions in Moff:

$$\begin{split} |\widetilde{\mathcal{M}}_{\mathsf{eff}}|^2 &= \left. \left( 1 + f_{\mathsf{s}}(\Delta E_{\gamma}) \right) |\mathcal{M}_{\mathsf{born}}|^2 + 2 \, \mathsf{Re} \big( \mathcal{M}_{\mathsf{born}} \, \mathcal{M}_{\mathsf{virt}}^* \big) \right. \\ &- \left. 2 \, f_{\mathsf{s}}^{\mathit{ISR},\mathcal{O}(\alpha)}(\Delta E_{\gamma}) \, |\mathcal{M}_{\mathsf{born}}|^2 \end{split}$$

• fold this with ISR structure function:

$$\int d\Gamma \int_0^1 dx_1 \int_0^1 dx_2 f^{\mathsf{ISR}}(x_1) f^{\mathsf{ISR}}(x_2) |\widetilde{\mathcal{M}}_{\mathsf{eff}}|^2(s,x_i))$$


- fISR(x): Initial state radiation (Jadach, Skrzypek, Z.Phys. 1991)
- $\Rightarrow$  describes collinear (real + virtual) photons in leading log accuracy  $\Leftarrow$ 
  - $f_{\epsilon}^{\mathsf{ISR},\mathcal{O}(\alpha)}$ : soft integrated  $\mathcal{O}(\alpha)$  contribution

Photons: fixed order vs resummation

Outline

# Resumming: What do we get

•  $\mathcal{O}(\alpha)$ : equivalent to fixed order method

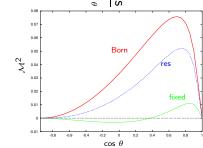


(-++-), 
$$\Delta E_{\gamma} = 0.5 \, \text{GeV}$$

higher orders:

Photons: fixed order vs resummation

 $\Rightarrow$  got rid of  $|\mathcal{M}|^2 < 0$ 


effects!! no negative

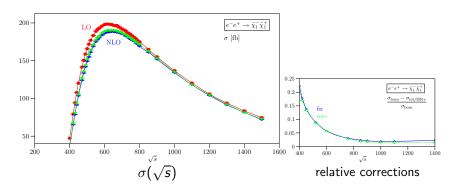
weights

Outline

# Resumming: What do we get

•  $\mathcal{O}(\alpha)$ : equivalent to fixed order method




Inclusion of NLO results in WHIZARD

(-++-), $\Delta E_{\gamma} = 0.5 \text{ GeV}$ 

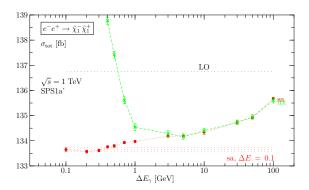
higher orders: higher order ISR for  $|\mathcal{M}_{born}|^2$  as well as Re  $(\mathcal{M}_{born} \mathcal{M}_{virt}^*)$  !!!  $\Rightarrow$  new higher order effects  $\Leftarrow$ 

additional possibility: also fold hard noncollinear process with ISR

### Results: cross sections



agrees with results in the literature (Fritzsche ea, Öller ea)

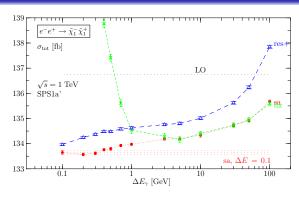



LCWS 2007, DESY Hamburg

Outline

Results

### A closer look: $\Delta E_{\gamma}$ dependence of $\sigma_{\text{tot}}$



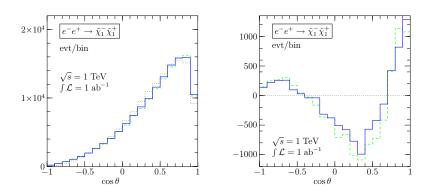

- semianalytic (FormCalc ): tests soft approximation, shifts: 2 - 5 \% ( $\Delta E_{\gamma} \leq 10 \,\mathrm{GeV}$ )
- fixed order result (WHIZARD): same as 'sa' for  $\Delta E_{\gamma} \geq 3 \, \mathrm{GeV}$ , smaller values:  $|\mathcal{M}_{\mathrm{eff}}|^2 \leq 0$  effects



LCWS 2007, DESY Hamburg

Tania Robens




 $\sigma_{\rm tot}(\Delta E_{\gamma})$ :
resummation includes
higher order effects
5% difference to 'sa'
for  $\Delta E_{\gamma} \leq 10\,{\rm GeV}$ 

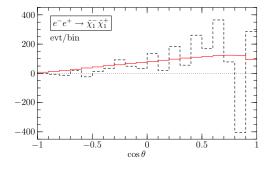
#### In summary:

shift in  $\Delta E_{\gamma}$  leads to % effects, match ILC accuracy  $\Rightarrow$  careful choice of  $\Delta E_{\gamma}$ , method important "best" choice: fully resummed version with low energy cut



### simulation results: angular distributions



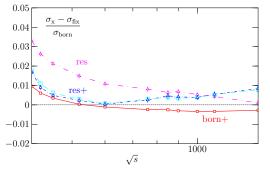

Born, fixed order, resummation

!! more than 1  $\sigma$  deviation !!  $\sqrt{n_{\text{max}}} \approx \mathcal{O}(10^2)$ ; nbins = 20



LCWS 2007, DESY Hamburg

### Angular distributions: higher orders




 $N_{\mathrm{res},+} - N_{\mathrm{ex}}$  red: 1 standard dev from Born result

also higher order contributions statistically significant

Results: higher order effects

### $\sqrt{s}$ dependence of different higher order contributions



relative difference:

Summary and Outlook

$$\frac{\sigma_{\mathsf{X}} - \sigma_{\mathsf{fix}}}{\sigma_{\mathsf{Born}}}$$

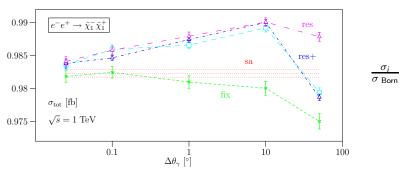
Born+: only Born folded w ISR, resummation, fully resummed result

difference between Born+ and fully resummed result: multiple photon emission from interaction term



Appendix

### Summary and Outlook


- Chargino/ neutralino sector of MSSM: high precision in SUSY paramater analysis at EW scale (% at ILC)
- same size/ larger NLO corrections
- ⇒ include NLO results in Monte Carlo Event generators
  - resummation method for photons allows lower soft cuts/ inclusion of higher order contributions
  - NLO as well as higher order contributions significant !!
  - next steps: include NLO corrections to  $\widetilde{\chi}$  decays ( $\rightarrow$  talk by K.Rolbiecki), non-factorizing contributions (start with photonic corrections in the double-pole approximation)
  - general interface to FormCalc generated matrix elements: extendable to other processes...



Appendix

### cut dependencies: $\Delta \theta_{\gamma}$

#### tests: collinear photon approximation



 $\sigma_{tot}$  again larger for resummation method for higher angles: second order ISR effects between 0.05° and 0.1°  $(\mathcal{O}(\%))$ 

(Denner 1992)

Outline

### photon approximations $\eta$ , $f_s$ , hard collinear approximation, $ISR^{\mathcal{O}(\alpha)}$

$$\bullet$$
  $\eta = rac{2lpha}{\pi} \left( \log\left(rac{Q^2}{m^2}
ight) - 1 
ight) \; \left(Q = ext{scale of process}
ight)$ 

$$f_{\mathsf{s}} = -rac{lpha}{2\pi} \sum_{i,j=e^{\pm}} \int_{|\mathbf{k}| \leq \Delta \mathsf{E}} rac{d^3 k}{2\omega_k} rac{(\pm) \, p_i \, p_j \, Q_i \, Q_j}{p_i \, k \, p_j \, k},$$

$$\omega_k = \sqrt{\mathbf{k^2} + \lambda^2}$$
,  $p_i$  initial/ final state momenta,  $k$ :  $\gamma$ 

momentum • hard collinear factor ( $\pm$  helicity conserving/ flipping):

$$f^{+}(x) = \frac{\alpha}{2\pi} \frac{1+x^2}{(1-x)} \left( \ln \left( \frac{s(\Delta\theta)^2}{4m^2} \right) - 1 \right), f^{-}(x) = \frac{\alpha}{2\pi} x.$$
(Dittersion 100)

(Dittmaier 1993)

•

 $f_s^{ISR,\mathcal{O}(\alpha)} = \left[ \int_{x_0}^1 f_{ISR}(x) \, dx \right]_{\mathcal{O}(\alpha)} = \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}}$   $\frac{\eta}{\eta} = \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}} + \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}} + \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}} + \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}} + \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}} + \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}} + \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}} + \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}} + \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}} + \frac{\eta}{4} \left( 2 \ln(1-x_0) + x_0 + \frac{1}{2} x_0^2 \right)_{\text{prin Pahens}} + \frac{\eta}{4} \left( 2 \ln(1-x_0) + \frac{1}{4} x_0 + \frac{$ 

soft region effects

Outline

## ISR in its full beauty (Skrzypek ea, 91)

 $\Gamma_{ee}^{LL}(x,Q^2) = \frac{\exp(-\frac{1}{2}\eta\gamma_E + \frac{3}{8}\eta)}{\Gamma(1+\frac{\eta}{2})} \frac{\eta}{2} (1-x)^{(\frac{\eta}{2}-1)}$ 

$$-\frac{\eta}{4}(1+x) + \frac{\eta^2}{16}\left(-2(1-x)\log(1-x) - \frac{2\log x}{1-x} + \frac{3}{2}(1+x)\log x - \frac{x}{2}\right)$$

$$-\frac{5}{2}\right) + \left(\frac{\eta}{2}\right)^3 \left[-\frac{1}{2}(1+x)\left(\frac{9}{32} - \frac{\pi^2}{12} + \frac{3}{4}\log(1-x) + \frac{1}{2}\log^2(1-x)\right)\right]$$

$$-\frac{1}{4}\log x \log(1-x) + \frac{1}{16}\log^2 x - \frac{1}{4}\text{Li}_2(1-x)\right]$$

$$+\frac{1}{2}\frac{1+x^2}{1-x}\left(-\frac{3}{8}\log x + \frac{1}{12}\log^2 x - \frac{1}{2}\log x \log(1-x)\right)$$

$$-\frac{1}{4}(1-x)\left(\log(1-x) + \frac{1}{4}\right) + \frac{1}{32}(5-3x)\log x\right]; \eta = \frac{2\alpha}{\pi}\left(\log\left(\frac{Q^2}{m_e^2}\right) - 1\right)$$

Tania Robens MC Simulations for NLO Chargino Production at the ILC LCWS 2007, DESY Hamburg