## Anomalous Couplings in $\gamma\gamma \rightarrow W^+W^-$

based on work by

M. Manitias, <u>A. v. Manteuffel</u>, O. Nachtmann, F. Nagel, M. Pospischil, A. Utermann



Institut für Theoretische Physik Universität Heidelberg

#### LCWS 2007 DESY Hamburg, 30.5.-3.6. 2007

# Outline

Effective Lagrangian Approach

2 Observables for Anomalous Couplings in  $\gamma\gamma o WW$ 





# Layout

## Effective Lagrangian Approach

2) Observables for Anomalous Couplings in  $\gamma\gamma o WW$ 





# The Effective Lagrangian approach

Anomalous couplings:

- in Standard Model (SM) couplings of γ, W, Z fixed by: gauge invariance & renormalisability
- $\bullet~$  deviations  $\Rightarrow$  signal for new physics
- ILC allows precise tests (see e.g. talks by G. Weiglein, J. Reuter)
- here: sensitivity at *ILC*  $\gamma\gamma$  option via  $W^+W^-$  production

## Generic descriptions of deviations from SM:

- Form Factors
  - allow arbitrary complex couplings for vertices
  - very general, many parameters
  - process specific
- 2 Effective Lagrangians
  - add higher dimensional operators
  - real couplings
  - process independent
  - (a) *L<sub>eff</sub>* after EWSB
    - moderate number of couplings for low dim. op.
  - (b) *L<sub>eff</sub>* before EWSB
    - ★ few couplings for low dim. op.

# Effective Lagrangian before EWSB

- start from SM Lagrangian (incl. Higgs doublet  $\varphi$ )
- add all higher dim. operators which are
  - Lorentz-invariant
  - $SU(3) \times SU(2) \times U(1)$  invariant

$$\Rightarrow \quad \mathscr{L}_{eff} = \mathscr{L}_0 + \underbrace{\mathscr{L}_1}_{\text{dim 5 op.}} + \underbrace{\mathscr{L}_2}_{\text{dim 6 op.}} + \dots$$

- imposing
  - equation of motion
  - lepton and baryon number conservation

 $\Rightarrow \quad \mathcal{L}_1: \text{ none, } \quad \mathcal{L}_2: 80 \text{ operators} \\ (Buchmüller, Wyler 1986) \end{cases}$ 

## Gauge and gauge-Higgs anomalous couplings

pure gauge and gauge-Higgs part

$$egin{aligned} \mathscr{L}_2 &= rac{1}{v^2} \left( h_W O_W + h_{ ilde W} O_{ ilde W} + h_{arphi W} O_{arphi W} + h_{arphi ilde W} O_{arphi ilde W} + h_{arphi ilde B} O_{arphi ilde B} + h_{arphi ilde B} O_{arphi ilde B} + h_{arphi}^{(1)} O_{arphi}^{(1)} + h_{arphi}^{(3)} O_{arphi}^{(3)} 
ight), \end{aligned}$$

$$\begin{split} O_{W} &= \epsilon_{ijk} \ W_{\mu}^{i\,\nu} \ W_{\nu}^{j\,\lambda} \ W_{\lambda}^{k\,\mu}, & O_{\bar{W}} &= \epsilon_{ijk} \ \tilde{W}_{\mu}^{i\,\nu} \ W_{\nu}^{j\,\lambda} \ W_{\lambda}^{k\,\mu}, \\ O_{\varphi W} &= \frac{1}{2} \left( \varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i} \ W^{i\,\mu\nu}, & O_{\varphi \bar{W}} &= \left( \varphi^{\dagger} \varphi \right) \ \tilde{W}_{\mu\nu}^{i} \ W^{i\,\mu\nu}, \\ O_{\varphi B} &= \frac{1}{2} \left( \varphi^{\dagger} \varphi \right) \ B_{\mu\nu} B^{\mu\nu}, & O_{\varphi \bar{B}} &= \left( \varphi^{\dagger} \varphi \right) \ \tilde{B}_{\mu\nu} B^{\mu\nu}, \\ O_{WB} &= \left( \varphi^{\dagger} \tau^{i} \varphi \right) \ W_{\mu\nu}^{i} B^{\mu\nu}, & O_{\bar{W}B} &= \left( \varphi^{\dagger} \tau^{i} \varphi \right) \ \tilde{W}_{\mu\nu}^{i} B^{\mu\nu}, \\ O_{\varphi}^{(1)} &= \left( \varphi^{\dagger} \varphi \right) \left( \mathcal{D}_{\mu} \varphi \right)^{\dagger} \left( \mathcal{D}^{\mu} \varphi \right), & O_{\varphi}^{(3)} &= \left( \varphi^{\dagger} \mathcal{D}_{\mu} \varphi \right)^{\dagger} \left( \varphi^{\dagger} \mathcal{D}^{\mu} \varphi \right). \end{split}$$

• 10 dimensionless anomalous couplings *h<sub>i</sub>* with

$$h_i \sim \mathcal{O}\left(v^2/\Lambda^2\right),$$

where v = 246 GeV,  $\Lambda =$  new physics scale

• 4 anomalous couplings CP violating

Processes at the ILC

•  $e^+e^- \rightarrow Z$  (Giga Z) highly sensitive to ( $P_Z$ ):

 $h_{WB}, h_{\varphi}^{(3)}$ 

•  $e^+e^- \rightarrow W^+W^-$  sensitive to  $(P_W)$ :

$$h_W, h_{W\!B}, h_{\varphi}^{(3)}, h_{\tilde{W}}, h_{\tilde{W}B}$$

(3 CP conserving, 2 CP violating)

•  $\gamma \gamma \rightarrow W^+ W^-$  sensitive to  $(P_W)$ :

 $h_{W}, h_{W\!B}, h_{\tilde{W}}, h_{\tilde{W}\!B}, (s_1^2 h_{\varphi W} + c_1^2 h_{\varphi B}), (s_1^2 h_{\varphi \tilde{W}} + c_1^2 h_{\varphi \tilde{B}})$ 

(3 CP conserving, 3 CP violating)

• only  $\gamma\gamma$  process allows direct measurement of:

$$egin{aligned} h_{arphi WB} &\equiv s_1^2 \ h_{arphi W} + c_1^2 \ h_{arphi B} \ h_{arphi ilde W ilde B} &\equiv s_1^2 \ h_{arphi ilde W} + c_1^2 \ h_{arphi ilde B} \end{aligned}$$

where  $s_1^2 \equiv \frac{e^2}{4\sqrt{2}G_F m_W^2}, \quad c_1^2 \equiv 1 - s_1^2$ 

all processes together: 7 out of 10 indep. couplings observable

## Previous work

a lot of excellent work on anomalous couplings in  $\gamma\gamma \rightarrow WW$  exists: e.g. (incomplete) Tupper, Samuel (1981), Choi, Schrempp (1991), Yehudai (1991), Bélanger, Boudjema (1992), Herrero, Ruiz-Morales (1992), Bélanger, Couture (1994), Choi, Hagiwara, Baek (1996), Baillargeon, Bélanger, Boudjema (1997), Božović-Jelisavčić, Mönig, Šekarić (2002), Bredenstein, Dittmaier, Roth (2004), Möniq, Šekarić (2005), Nachtmann, Nagel, Pospischil, Utermann (2005),

. . .



Effective Lagrangian Approach

#### 2 Observables for Anomalous Couplings in $\gamma\gamma o WW$

Sensitivity with Unpolarised Beams



## Feynman diagrams

Consider

$$\gamma\gamma 
ightarrow W^+W^- 
ightarrow far{f}\,far{f}$$

in narrow-width-approximation.



## Total cross section



- up to  $\gamma^2$  enhancements for anomalous ME
- CP odd only at quadratic order

Distributions

#### Nachtmann, Nagel, Pospischil, Utermann



no CP odd in linear order

### Inclusion of decay information

#### Nachtmann, Nagel, Pospischil, Utermann

Full information: diff. cross section incl. W decays

$$\begin{split} S(\phi) &\equiv \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Theta\,\mathrm{d}\cos\vartheta\,\mathrm{d}\varphi\,\mathrm{d}\cos\bar\vartheta\,\mathrm{d}\varphi} \\ &= \frac{3^2\beta}{2^{11}\pi^3 s} B_{12} B_{34} \mathcal{P}^{\lambda_3\lambda_4}_{\lambda'_3\lambda'_4} \mathcal{D}^{\lambda_3}_{\lambda'_3} \bar{\mathcal{D}}^{\lambda_4}_{\lambda'_4} \end{split}$$
where  $\phi$  = phase space variables

 $\Rightarrow$  access to  $\mathcal{O}(h)$  contrib. for all  $h_i$ .



## Inclusion of decay information

#### Nachtmann, Nagel, Pospischil, Utermann

Full information: diff. cross section incl. W decays

$$\begin{split} S(\phi) &\equiv \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Theta\,\mathrm{d}\cos\vartheta\,\mathrm{d}\varphi\,\mathrm{d}\cos\bar{\vartheta}\,\mathrm{d}\bar{\varphi}} \\ &= \frac{3^2\beta}{2^{11}\pi^3 s} B_{12} B_{34} \mathcal{P}^{\lambda_3\lambda_4}_{\lambda_3'\lambda_4'} \mathcal{D}^{\lambda_3}_{\lambda_3'} \bar{\mathcal{D}}^{\lambda_4}_{\lambda_4'} \end{split}$$

where  $\phi = \text{phase space variables}$ 

 $\Rightarrow$  access to  $\mathcal{O}(h)$  contrib. for all  $h_i$ .

No CP odd contributions  $\mathcal{O}(h)$  after phase space integration:

- expand diff. cross section in  $h_i$ :  $d\sigma/d\phi = S_0(\phi) + \sum_i h_i S_{1i}(\phi) + O(h^2)$
- linear coefficient = interference term

$$\mathcal{S}_{i}(\phi) \propto \sum_{\lambda_{3},\lambda_{4},\lambda_{3}',\lambda_{4}'} 2\operatorname{\mathsf{Re}}\mathcal{M}_{\mathit{SM}}(\lambda_{3},\lambda_{4})\mathcal{M}_{i}^{*}(\lambda_{3}',\lambda_{4}')\mathcal{D}_{\lambda_{3}'}^{\lambda_{3}}\bar{\mathcal{D}}_{\lambda_{4}'}^{\lambda_{4}}$$

• for CP parity  $\pi_i = \pm 1$  of  $\mathcal{O}_i$  we have

$$\mathcal{M}_i^* = \pi_i \mathcal{M}_i, \qquad (\mathcal{D}_{\lambda'}^{\lambda}(\cos \vartheta, \varphi))^* = \mathcal{D}_{\lambda'}^{\lambda}(\cos \vartheta, -\varphi)$$

 $\Rightarrow$  CP mixed expressions vanish after  $\varphi,\bar{\varphi}$  integration



#### **Optimal observables**

#### Atwood & Soni, Davier et al., Diehl & Nachtmann

How to measure anom. coupl. with best statistical accuracy ?  $\Rightarrow$  optimal observables

expand diff. cross section:

$$rac{\mathrm{d}\sigma}{\mathrm{d}\phi} = S_0(\phi) + \sum_i h_i S_{1i}(\phi) + \mathcal{O}(h^2)$$
 where  $egin{array}{c} h_i = ext{anomalous couplings} \ \phi = ext{phase space variables} \end{cases}$ 

statist. optimal observables for small h<sub>i</sub> (wo/ rate info):

$$\mathcal{O}_i \equiv rac{S_{1i}(\phi)}{S_0(\phi)}$$

• measure  $\phi_k$  for each event k = 1, ..., N, evaluate:

$$\bar{\mathcal{O}}_i = \frac{1}{N} \sum_k \mathcal{O}_i(\phi_k)$$

and calculate  $c_{ij} \equiv \langle (\mathcal{O}_i - \langle \mathcal{O}_i \rangle_0) (\mathcal{O}_j - \langle \mathcal{O}_j \rangle_0) \rangle_0$  with  $\langle \circ \rangle_0 = \frac{\int d\phi S_0(\phi) \circ}{\int d\phi S_0(\phi)}$  to get estimate of couplings

$$h_{i} = \sum_{j} c_{ij}^{-1} \left( \bar{\mathcal{O}}_{j} - \langle \mathcal{O} \rangle_{0} \right)$$

covariance matrix for h<sub>i</sub> computable without data

$$V(h) = \frac{1}{N}c_{ij}^{-1}$$

A. v. Manteuffel (Universität Heidelberg)



Effective Lagrangian Approach

2) Observables for Anomalous Couplings in  $\gamma\gamma o WW$ 





## Parameters

Choices and assumptions:

- semileptonic channels with  $I = e^+, \mu^+, e^-, \mu^-$
- no q flavour id  $\Rightarrow$  two-fold jet ambiguity
- *m<sub>Higgs</sub>* = 120 GeV

• 
$$\int L_{ee} = 500 \; {\rm fb}^{-1}$$

Note:

• CP even - CP odd correlations vanish

### Results: Sensitivity at fixed $\gamma\gamma$ energy

preliminary



## Unpolarised Compton spectrum

Ginzburg, Kotkin, Panfil, Serbo, Telnov

norm. single  $\gamma$  spectrum:



#### norm. $\gamma\gamma$ luminosity spectrum:



Photons via Compton backscattering of laser on *e* beam



- use simple Compton formula
- $\sqrt{s_{ee}} = 500 \text{ GeV}$
- hard  $\gamma\gamma$  CMS statistically distrib.
- more realistic: nonlinear effects + multiple scattering

# Neutrino ambiguity

neutrino momentum unknown, reconstruction not unique:

- transversal momentum unique
- two-fold ambiguity for neutrino energy (for part of phase space)
- $\times$  two-fold jet ambiguity (as before)

for calculation of covariance matrix:

- use Jacobi-weighted sums over experim. equivalent states
- integrate sums over unique phase space

general discussion of opt. observ. in presence of ambiguities: Nachtmann, Nagel, Pospischil

### Results: Sensitivity with Compton spectrum

preliminary



A. v. Manteuffel (Universität Heidelberg)



Effective Lagrangian Approach

2) Observables for Anomalous Couplings in  $\gamma\gamma o WW$ 

Sensitivity with Unpolarised Beams



## Possible improvements

Expect higher accuracies from

- higher energies
- polarised  $\gamma\gamma$  initial state

Polarisation ( $\sim$  more information) disentangles different contributions:

increased differences in angular distributions



# High energies through polarisation

#### Notation:

- λ<sup>e</sup> = mean e helicity
- $P^{C}$  = circular laser polarisation
- *k* = conversion efficiency

# Polarisation of e and laser gives

- significant change in spectral distributions
- enhanced high energy peak for opposite mean helicities  $(\lambda^e P^c = -1/2)$

norm. single  $\gamma$  spectrum:







# Effective polarisation of hard $\gamma\gamma$

Norm. luminosity spectra for different helicities for choice  $\lambda_1^e = \lambda_2^e = 1/2$ ,  $P_1^C = P_2^C = -1$ :



Polarisation of resulting hard  $\gamma\gamma$ :

- only slight average polarisation
- but: considerable separation in energy
- high energy enhancement provided by  $\lambda^e P^c = -1/2$
- still free choice: signs of λ<sup>e</sup><sub>i</sub>
  - $\Rightarrow$  adjust signs to select high energy peak for specific helicities

### Results: Sensitivity with polarisation

 $\begin{array}{c} \text{unpol} \\ J_z = 0 \\ J_z = 2 \end{array}$ 2.5 $\mathbf{2}$  $\delta h \left[ 10^{-3} \right]$ 1.51 0.50  $O_{WB} O_{\varphi WB} O_{\tilde{W}} O_{\tilde{W}B} O_{\varphi \tilde{W} \tilde{B}}$  $O_W$  $h_{\varphi WB}[10^{-3}]$  $h_{\varphi \tilde{W} B}[10^{-3}]$ 2 1 0 -1 $^{-1}$ -2-20000 ST. States  $^{-2}$  $h_{\tilde{W}}[10^{-3}]^{-0}$  $h_W[10^{-3}]$  0  $h_{WB}[10^{-3}]$  $h_{\tilde{W}B}[10^{-3}]$ 5 9 CP even  $(J_z = 0)$ CP odd  $(J_z = 0)$ 

A. v. Manteuffel (Universität Heidelberg)

preliminary

## Comparison to $e^+e^-$

| LEP & SLD (*)    | ee  ightarrow WW (*)   | $\gamma\gamma  ightarrow WW$ unpolarised | $\begin{array}{l} \gamma\gamma \rightarrow WW \\ J_z = 0 \end{array}$ |  |
|------------------|------------------------|------------------------------------------|-----------------------------------------------------------------------|--|
| $h_i  [10^{-3}]$ | $\delta h_i [10^{-3}]$ | $\delta h_i [10^{-3}]$                   | $\delta h_i [10^{-3}]$                                                |  |

measurable CP conserving couplings:

| hw                | $-69\pm39$     | 0.3  | 0.6 | 0.3 |
|-------------------|----------------|------|-----|-----|
| h <sub>WB</sub>   | $-0.06\pm0.79$ | 0.3  | 1.6 | 0.7 |
| $h_{\varphi WB}$  | ×              | ×    | 2.2 | 0.9 |
| $h_{arphi}^{(3)}$ | $-1.15\pm2.39$ | 36.4 | ×   | ×   |

#### measurable CP violating couplings:

| h <sub>ŵ</sub>                            | $68\pm81$ | 0.3 | 0.7 | 0.3 |
|-------------------------------------------|-----------|-----|-----|-----|
| h <sub>ĩv</sub> B                         | $33\pm84$ | 2.2 | 2.0 | 0.9 |
| $h_{\varphi \widetilde{W} \widetilde{B}}$ | ×         | ×   | 2.0 | 0.6 |

3 more anomalous couplings unaccessible by these methods:

$$h_{\varphi}^{(1)}, h_{\varphi WB}', h_{\varphi \tilde{W}\tilde{B}}'$$

(\*) Nachtmann, Nagel, Pospischil

### Results: Sensitivity at 1 TeV



integrated luminosities:

• at 
$$\sqrt{s_{ee}} = 500$$
 GeV:  $L_{ee} = 500$  fb<sup>-1</sup>

• at 
$$\sqrt{s_{ee}} = 1$$
 TeV:  $L_{ee} = 1000 \text{ fb}^{-1}$ 

# Summary

#### Effective Lagrangian approach:

- parametrisation of deviations from SM by new high energy physics
- process independent
- 10 anomalous gauge / gauge-Higgs couplings (6 CP cons., 4 CP viol.)

#### $e^+e^- ightarrow WW$ at the ILC:

- norm. distributions: 5 anom. coupl.
- accuracies  $\mathcal{O}(10^{-3})$  for anom. coupl.

#### Electroweak precision observables (Giga-Z) at the ILC:

best for 2 of above 5 anom. coupl.

#### $\gamma\gamma \rightarrow \textit{WW}$ at the ILC:

- norm. distributions: 2 more anom. coupl.
- accuracies  $\mathcal{O}(10^{-3})$  for anom. coupl.
- polarisation may reduce errors by a factor of 2

# Supplementary Slides

- Details for present limits
- Heavy Higgs
- Separation Cuts
- Polarised photons at fixed energy

## Present limits: CP conserving

Present bounds on CP conserving couplings from LEP1, LEP2, SLD,  $\Gamma_W$ ,  $M_W$  ( $P_Z$ ):



| $s_{	ext{eff}}^2,  \Gamma_Z,  \sigma_{	ext{had}}^0,  R_\ell^0,  m_W,  \Gamma_W,  	ext{TGCs}$ |                     |         |         |         |                       |   |        |       |
|----------------------------------------------------------------------------------------------|---------------------|---------|---------|---------|-----------------------|---|--------|-------|
| т <sub>Н</sub>                                                                               |                     | 120 GeV | 200 GeV | 500 GeV | $\delta h 	imes 10^3$ |   |        |       |
| hw                                                                                           | $\times 10^{3}$     | -62.4   | -62.5   | -62.8   | 36.3                  | 1 | -0.007 | 0.008 |
| h <sub>WB</sub>                                                                              | imes10 <sup>3</sup> | -0.06   | -0.22   | -0.45   | 0.79                  |   | 1      | -0.88 |
| $h^{(3)}_{arphi}$                                                                            | $	imes 10^3$        | -1.15   | -1.86   | -3.79   | 2.39                  |   |        | 1     |

## Heavy Higgs

#### preliminary





## Separation cuts

#### 

Separation cuts on observed fermions:

- fermion energy > 10 GeV
- fermion angle w.r.t. beam  $> 10^{\circ}$
- angle betw. obs. fermions > 25°



## Polarised photons at fixed energy



• 
$$\sqrt{s_{\gamma\gamma}} = 250 \text{ GeV}$$

• no sensitivity on  $h_{\varphi WB}, h_{\varphi \tilde{W}\tilde{B}}$  for  $J_z = 2$