

Sources Working Group Summary

Duncan Scott ASTeC Daresbury Laboratory

Date Event

Global Design Effort

1

Introduction

- Electron Source Update
 - 1 presentation
- Baseline Positron Source Update
 - 8 presentations
- Alternative Positron Source Update
 - 4 presentations
- Polarisation Session summary

Electron Source

• Main R&D areas

– Source laser

- Generate 3 MHz pulsetrain using mode locked oscillator and fast Pockel's cell
- regenerative amplifier design using 40 W cw pump laser

Polarised gun development

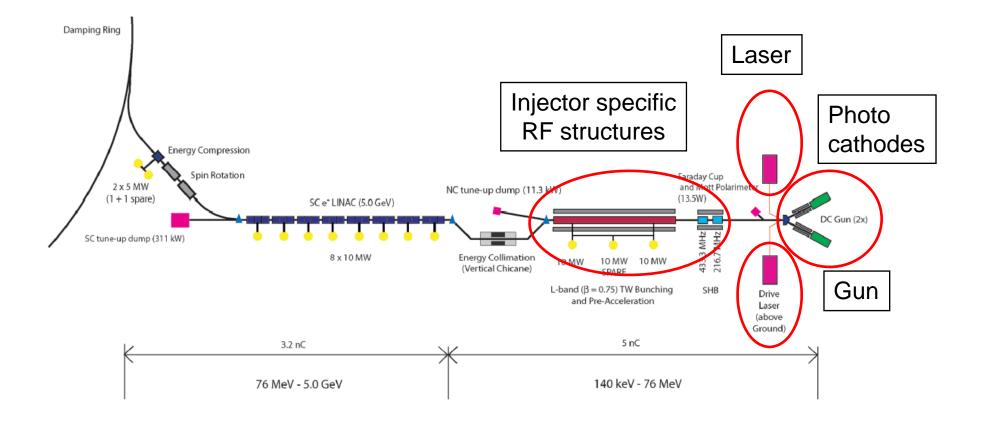
- 'Best' parts of SLAC and JLAB polarised DC guns are being used to develop the ILC gun
- HV power supply, vacuum design, load lock etc.

- Injector

- Design and Development of injector specific RF structures
- Sub Harmonic Bunchers
- L-band bunchers
- Pre-accelerating structures

– Photocathode Development

• Longer lifetime

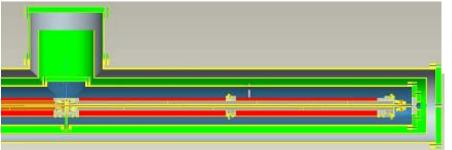

Electron Source

- Current Regional Effort
 - Americas
 - SLAC
 - JLAB
 - Asia
 - KEK,
 - Universities
 - (not yet collaborating with US labs)
 - Europe
 - University of St. Petersburg

e⁻ Source EDR Planning

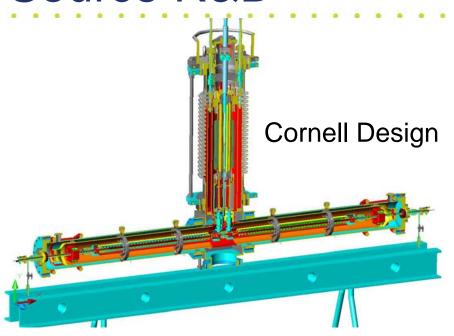
- Design is well defined
 - No alternatives,
 - It was decided not to pursue alternative options (e.g. polarized RF-Gun) using ILC funding
- Much of EDR is part of R&D program
 - e.g. laser system, gun development
- EDR part 1:Component design
- EDR part 2:Systems design and integration

Date Event

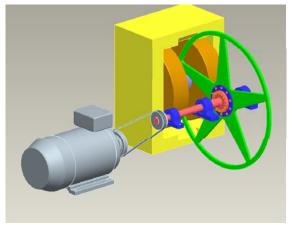

- Dec 07
 - EDR Scope definition: design depth and breadth, cost, schedule, staff
- Dec 08
 - Freeze layout, full component and civil specifications
- Jan 09
 - EDR detailed component inventory
- May 09
 - First cost review
- Dec 09
 - Deliver EDR and preconstruction work plan

Proposed (requested) EDR Staff Resources

			• • •
Work Package	FY08	FY09	
2.3 (Design)	1.25	2.5	
3.3.1.1 (Laser)	0.5	1	
3.3.1.2 (Gun)	0.75	1.5	
3.3.1.3 (Injector)	0.5	1	
3.3.1.4 (Photocathode)	0.5	1	
Totals Date Event Hamburg	3.5		• •

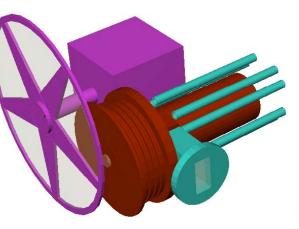


- Main R&D Areas
 - Undulator
 - Build working prototypes
 - UK/Cornell
 - Different Parameters



UK Design

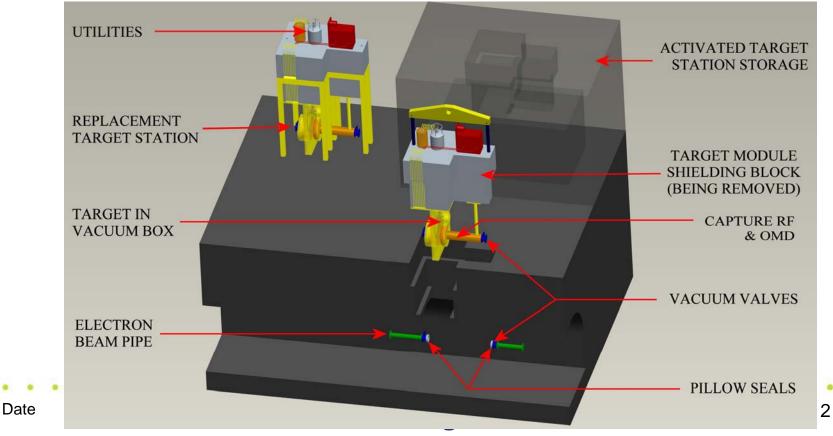
- Effects on electron beam
 - Many completed
 - (there's always more you can think of...)



- Target Development
 - Eddy Current braking experiment
 - Test vacuum and water feed-through components
 - (Daresbury/Liverpool/Cockcroft)
 - Confirm activation calculations with experiment to benchmark codes

• SLAC/DESY/Daresbury/CERN

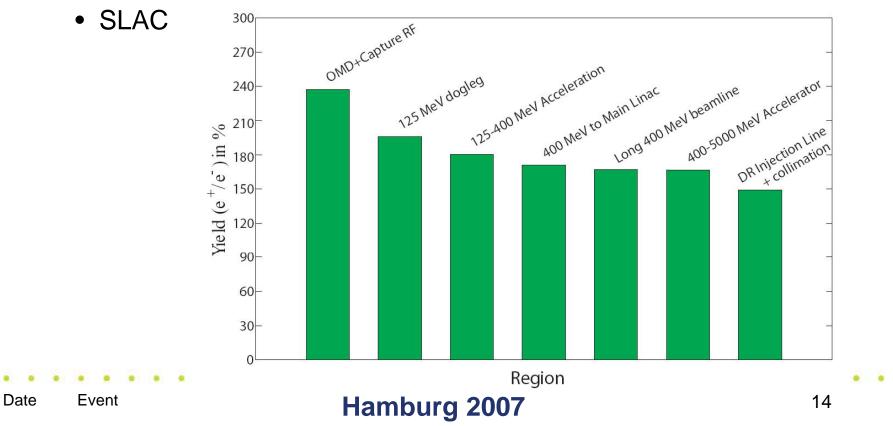
L.Fernandez, FLUKKA Simulation of target


Ushakov - Max dpa in target is ~0.01 dpa / cm³ After 5000 hours of operation

Date Event

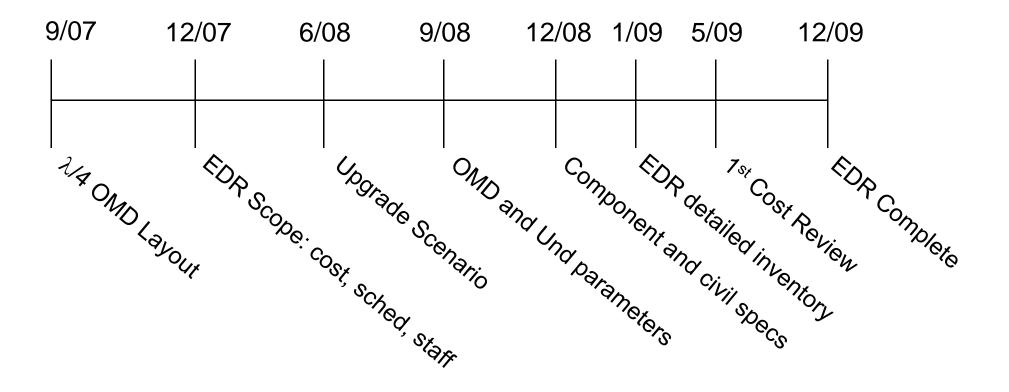
- Alternative target designs
 - Ceramics
 - (silicon carbides, aluminium nitrides etc.)
 - RAL
 - Cornell
 - Ti needle target
 - Liquid metal target with Pb/Bi or Hg
 - Tungsten disk
- Optical Matching Device
 - Due to eddy current concerns design of a ¼ wave focusing optics and lithium lens is under way (works "today")
 - Argonne

- Remote Handling
 - Develop RAL concept to minimise hot spare replacement time (currently 53 hours)
 - Nobody working on this!

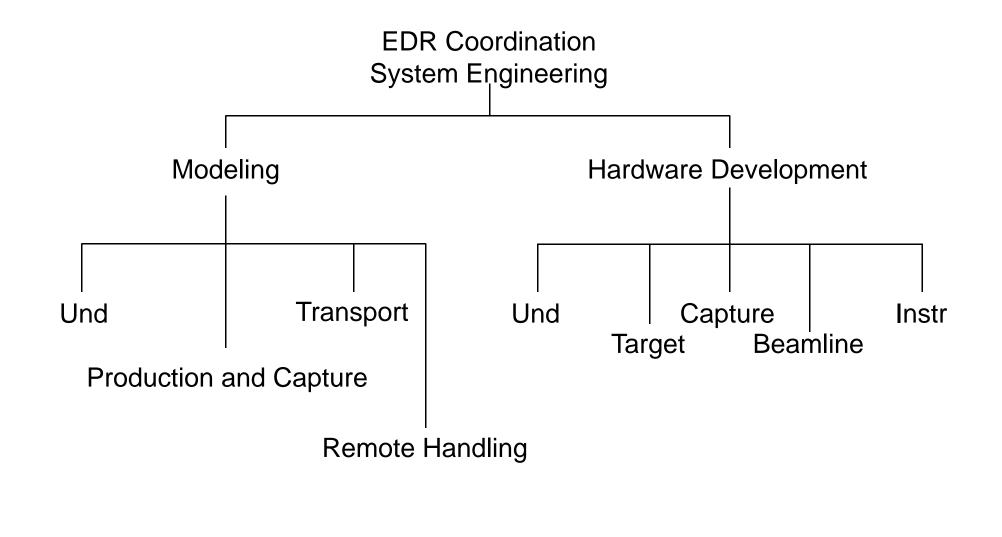

- Capture RF
 - Develop prototype for heat load tests
 - SLAC

Also being worked on at INR

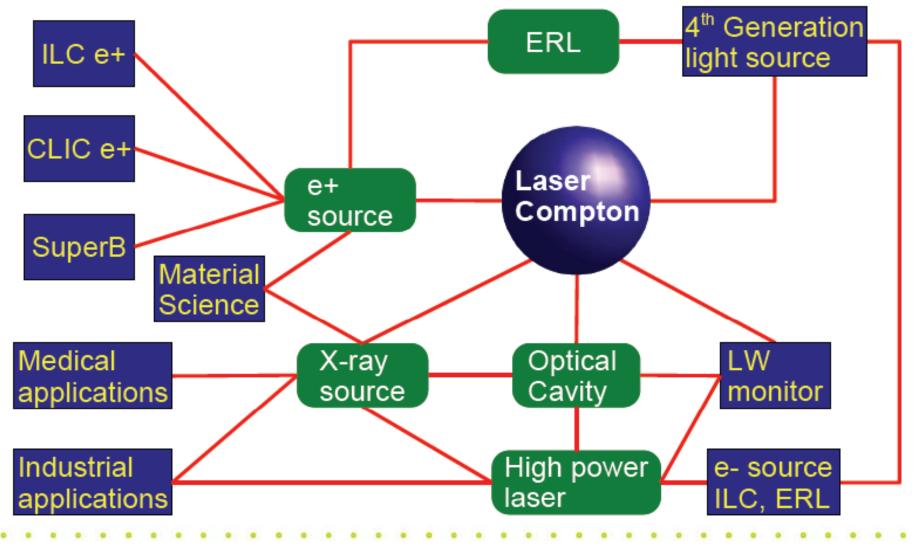
- Capture optics
 - Optimise losses
 - Too high % of 500MeV positron lost (design a collimation system)



- Upgrade Scenarios
 - Polarisation
 - More detailed polarised source specification
 - Length of undulator,
 - Beam Jitter effect on polarisation,
 - Spin preservation (jointly with electron spin preservation)
 DESY/Cockcroft


– Energy

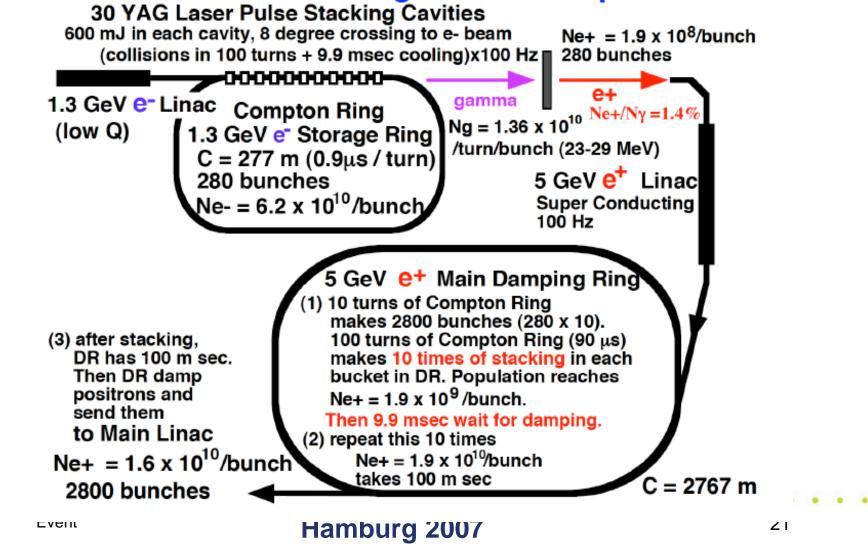
- Relocate entire system
- If the undulator is kept at the same point in the linac then the emittance increase due to chicane is a problem


Work Package Development for 12/07

- Assign WP Leader (Institution/Individual)
- Define Deliverable
- Identify Resources
- Discuss at ANL September ILC e+ Collaboration Meeting
- Complete WP Definition by December, 2007

Alternative Positron Source

- Alternative positron source is based on Compton scattered photons
 - Advantage
 - Independent operation
 - Disadvantage
 - Many technical challenges
- Three options
 - Energy Recovery Linac based Compton
 - Ring based Compton
 - Linac Based Compton
- Each option is still in 'concept' stage



Date Event

Date

Snowmass 2005 Ring based Compton

- Advantage
 - New, high quality beam every turn
- Concept based on some working assumptions, i.e.
 - Top up injection is possible
 - ...
- Many parameter choices are still to be made
 repetition frequency
- Issues
 - Coherent Synchrotron Radiation, Stacking, ERL study, laser study, capture study

• For more information on an example ERL concept see:

"ERL based Compton e+ source for ILC" Tsunehiko OMORI (KEK)

Laser/optical cavity R&D

- Several areas of laser / cavity development
 - CO2 laser development for Linac based compton and a 4 GeV linac (BNL)
 - Fabry Perot resonators program in LAL-Orsay
 - Compton gamma-ray generation experiment by using an optical cavity in ATF

See

"Experimental Effort for Alternative Schemes" "Hirotaka Shimizu2

Compton EDR Milestones

- June 07: EDR Scope definition: design depth and breadth, cost, schedule, staff.
- Dec 07: Complete the conceptual design of the components and system.
- ▶ Dec 08: Complete basic R&D.
- March 09: Freeze layout, full component and civil specifications
- ▶ June 09: EDR detailed component inventory.
- ► September 09: Cost review for the configuration change.
- ▶ Dec 09: Deliver EDR.
- ► Jan 10: System and Layout design for the mini-ILC e+ source.
- ► Jan 11 : Start the construction of mini-ILC e+ source based on Laser Compton.

Date Event

Work Packages

			Work							
			Conceptual Design	R&D	Prototyping	Engineering Desing				
	System Design		Many							
	Light Source	Laser Oscillator	KEK, BNL, LAL	KEK,BNL,LAL	KEK, LAL	KEK, LAL				
		Laser Amplifier	KEK.BNL,LAL	KEK.BNL,LAL	KEK, LAL	KEK, LAL				
		C02 laser	BNL	BNL	BNL BNL					
	Optical Cavity	2-mirrors cavity	KEK	KEK	KEK	KEK				
		4-mirrors cavity	LAL	LAL	LAL	LAL				
Laser	Laser ElectronSource Electro		BNL, KEK	BNL, KEK						
Compton		Storage Ring	Kharkov	Kharkov						
		ERL	ERL projects	ERL projects	ERL projects					
	Target	Rotating W-Re								
	Capture Optics	Lithium lens	BINP, Cornell	BINP, Cornell	BINP, Cornell	BINP, Cornell				
	Capture RF	NC L-band Acc								
	E+ stacking	e+ stacking	LAL, CERN	LAL, CERN	LAL, CERN	LAL, CERN				
	System Integration	Laser + Cavity + e- beam	KEK,BNL,LAL, Hiroshima	KEK,BNL,LAL, Hiroshima	KEK,BNL,LAL, Hiroshima	KEK,BNL,LAL, Hiroshima				
		ILC e+ prototyping	KEK, BNL, LAL, IHEP, Hiroshima	KEK, BNL, LAL, IHEP, Hiroshima	KEK, BNL, LAL, IHEP, Hiroshima	KEK, BNL, LAL, IHEP, Hiroshima				

Date Event

	Year	07			08				09				10			
	Quarter	2 nd Q	3 rd Q	4th Q	1 st Q	2 nd Q	3 rd Q	4th Q	1 [#] Q	2 nd Q	3rd Q	4th Q	1 st Q	2 nd Q	3 rd Q	4th Q
	System Design															
	Laser Oscillator															
	Laser Amplifier															
	CO2 laser cavity															
	Optical Cavity															
	2-mirrors cavity															
Laser	4-mirrors cavity															
	System Integration															
Compton	Electron Injector															
	Storage Ring															
	ERL															
	Solid target															
	NC L-band Acc															
	SI Laser + Optical															
	Cavity + e- beam															
	ILC e+ Prototyping															

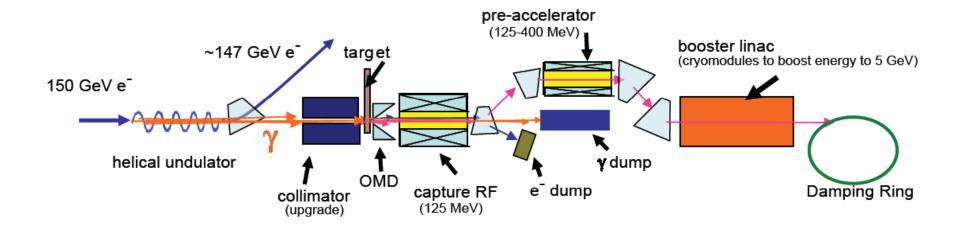
Legend

Conceptual DesignBasic R&D

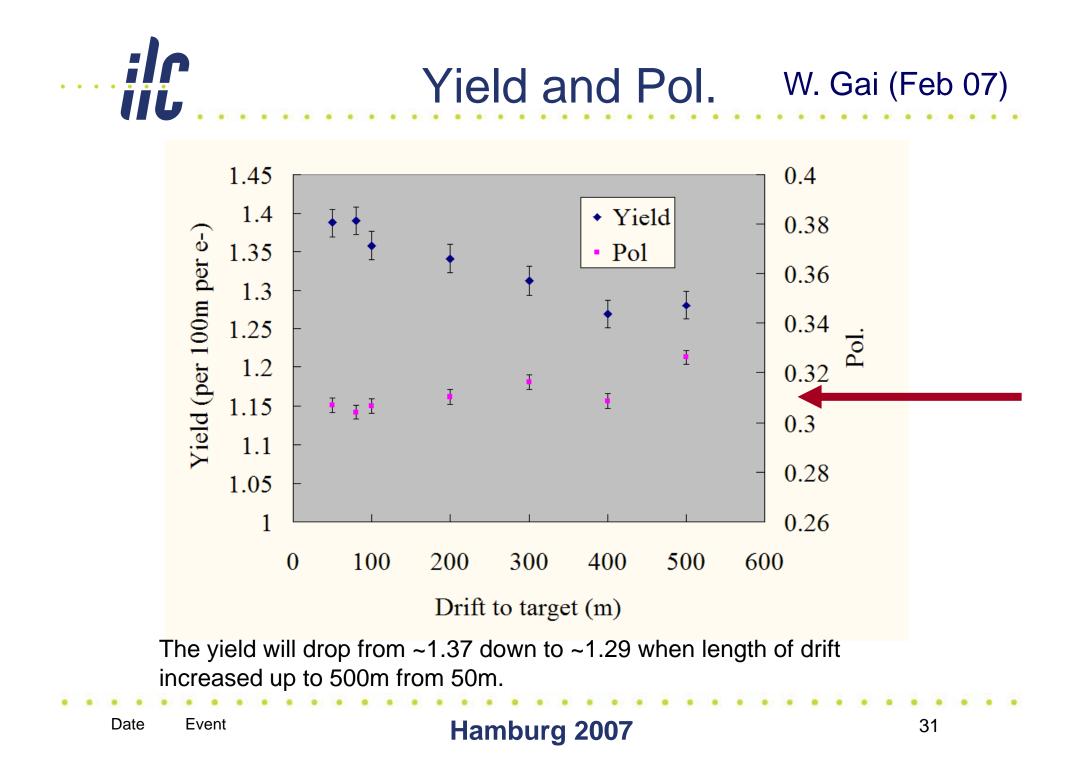
Engineering DesigrPrototyping

Sources Summary (personal view)

- Electron Source
 - **OK**
- Baseline positron source
 - Nobody working on remote handling
 - More coherent systems engineering required
 - More effort required on upgrade scenarios
- Compton Source
 - Choose a design
 - Costings
- Why can't Compton and Undulator groups work on similar problems?
 - Capture, target...



Part of Polarization Session Summary


Date Event

RDR: Positron Source

helical undulator, 148 m length (k=0.9 , λ =1.15cm) **Polarization: ~30%** (60% upgrade value)

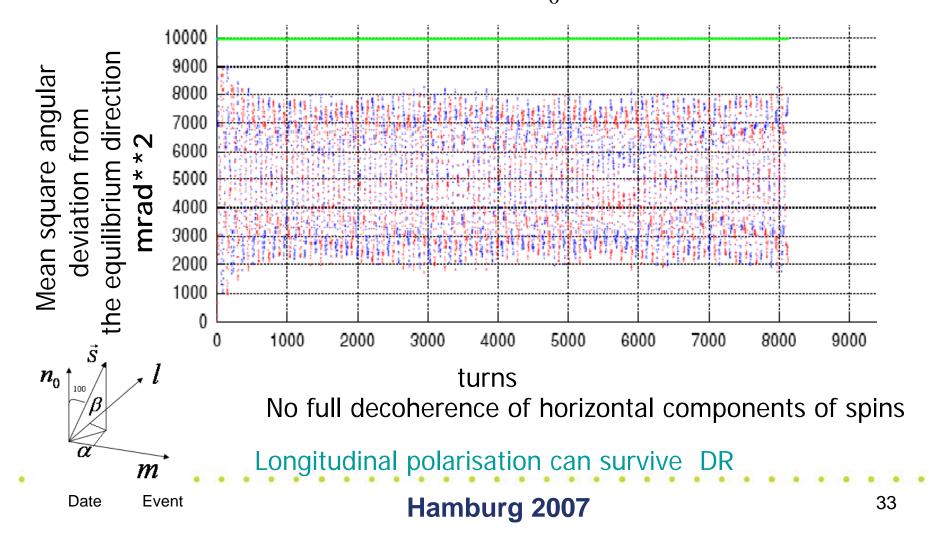
maintain e+ polarization → spin rotation before and after DR

Needs:

- \checkmark spin rotation
- ✓ polarimeter @ IP

Physics:

Desire fast reversal of (+) AND (-) helicity of positrons, Without reversal we would spent 50% of the measurements to the wrong pairing of initial states (lower cross sections)


Remark: If no polarization is needed ⇔ we have to destroy the 30%!

Studies on Depolarization in DR: L. Malysheva:

- Loss of polarisation in DR insignificant for new OCS6 lattice
- Depolarisation of positron beam with its large energy spread and transverse dimensions was estimated and found negligible
- The horizontal component of polarisation will survive in DR!

OCS Spin Diffusion at 5.066GeV for spins initially at 100 mrad from \hat{n}_0

Talks on simulation tools and studies:

CAIN

Dependency of background pair processes on beam polarization (Hartin)

GEANT4 with Polarized Processes (Release 8.2, 8.3)

Polarized Geant4 -- Applications at the ILC (Schaelicke)

GEANT3

ILC positron production target simulation (Gharibyan)

KONN

The status of positron source development at Cornell (Mikhailichenko)

Date Event

• The END

