Higgs and Top/QCD Summary

Shinya KANEMURA University of Toyama

LCWS 2007@DESY, May 29. – June 03. 2007, Hamburg, Germany

31 speakers

Higgs

A.Juste, I. Ginzburg, M.Maniatis, P.Lutz, T.Barklow,
 D.Boumediene, R.Godbole, P.Osland, M.Krawczyk,
 V.Martin, S.Dittmaier, S.Heinemeyer, M.Ohlerich,
 T.Underwood, R.Nikolaidou, J.Reuter, K.Tsumura,
 S.Bolognesi, G.Weiglein, M.Battaglia

Top/QCD

Y.Kiyo, A.Hoang, F.Gournaris, S.Boogert, A.Sopczak,
 A.Hoang, E.Boos, R.Godbole, A.Nomerotski,
 T.Gehrmann, M.Segond

The SM Higgs sector

- Gauge structure: $SU(3)c \times SU(2)i \times U(1)y$
- EWSB: $SU(2)i \times U(1)Y \rightarrow U(1)EM$

A Higgs doublet
$$\Phi = \begin{bmatrix} w^+ \\ \frac{1}{\sqrt{2}}(H+v+iz^0) \end{bmatrix}$$

$$V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4 \quad \langle \Phi \rangle = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}}v \end{bmatrix}$$

$$m_H^2 = 2\lambda v^2$$

Fields obtain masses from VEV.

Yukawa interaction
$$y_b(\bar{Q}_L\Phi)b_R o rac{y_bv}{\sqrt{2}}\bar{b}b$$

$$|D_{\mu}\Phi|^2 \to \frac{g^2v^2}{2}W^+W^-$$

Mass-Coupling relation in the SM


All masses are given in proportion to a unique VEV

$$\frac{2m_W}{g} = \frac{\sqrt{2}m_b}{y_b} = \frac{\sqrt{2}m_c}{y_c} = \frac{\sqrt{2}m_\tau}{y_\tau} = \frac{m_H}{2\sqrt{\lambda}} = v$$

Not measured

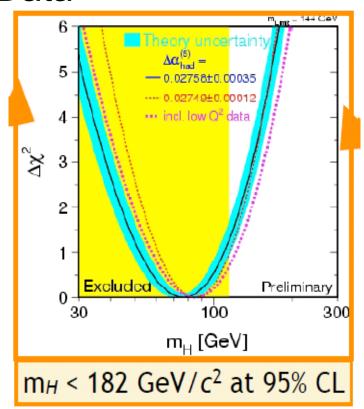
The SM is tested by using this universality

Measure both the mass and the coupling!

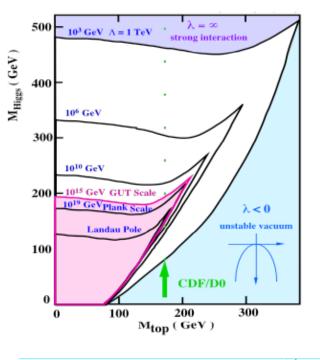
In general, this relation does not hold in the extended Higgs models.

What we know about the nature of Higgs already?

Essentially


- Nothing is known about Higgs-to-gauge coupling Nature of Higgs mechanism
- Nothing is known about Yukawa coupling
 Nature of fermion mass generation
- Nothing is known about Higgs self-coupling Nature of EWSB

SM Higgs Mass


the last unkown parameter of the SM

$$m_H^2 = \lambda \langle \Phi \rangle^2$$

Data

Theory

$$140 < m_H < 175 \text{GeV} \ (\Lambda = 10^{19} \text{GeV})$$

Martin

Favor a light Higgs boson if the SM is correct

Post-Higgs Problem

SM Higgs sector=Ugly

 $V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4$

Lots of problems which the SM cannot explain.

Negative mass in the potential?

A spin 0 particle: Unnatural behavior in UV area

fine tuning

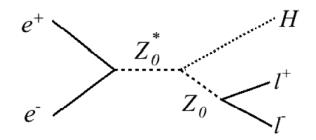
Nature of Yukawa coupling

Why only top quark obtain a natural size mass from the EWSB point of view?

- Paradigm for gauge unification
- Neutrinos
- Cosmology Baryogenesis, Dark Matter, Dark Energy

The SM cannot be fundamental.

New Physics solve these problems. Where? Tera scale!


ILC

- LHC starts this year
 Higgs or anything may be found in a few yrs
- ILC solve Post-Higgs Problem
 - Reconstruct Lagrangian of physics beyond the SM
 - Measure precisely mass, spin, couplings of the SM and also NP particles.
 - Precise measurements
 requre higher order calculation

Higgs mass

Higgs boson mass

- -LHC [1GeV]
- ILC [50 MeV]
- recoil mass measurement Ohlerich

Recoil Mass Analysis

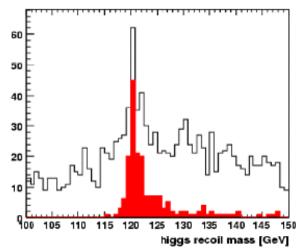
M.Ohlerich

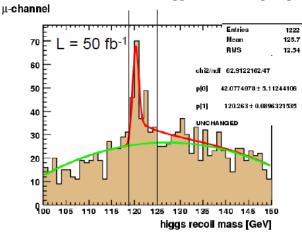
Higgs strahlung

Recoil Higgs mass (Model Independent)

$$m_h^2 = s + m_Z^2 - 2E_Z\sqrt{s}$$

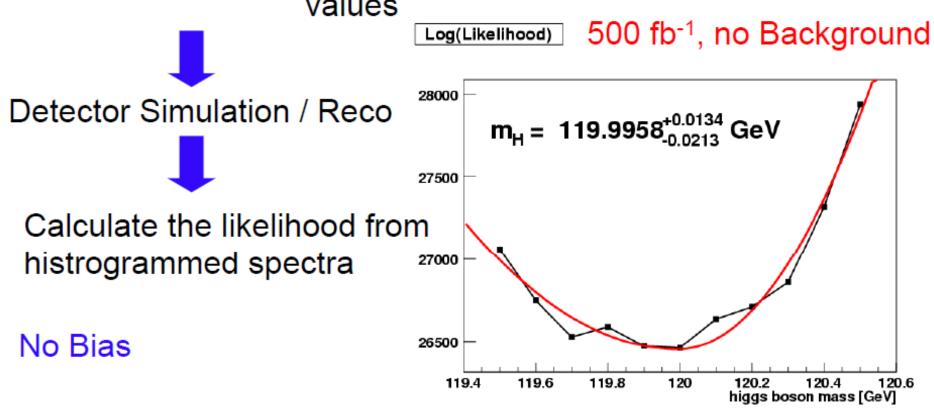
Coupling strength


$$g_{ZZH}^2 \propto \sigma = N / L \varepsilon$$


Simulation study

SM
$$m_H$$
=120GeV E_{cms} = 250 GeV

Detector Simulation Full reconstruction of isolated leptons



combined X-section: $245.4 \text{ fb} \pm (10.4\%)$

Higgs Recoil Mass

Event Generator : create samples for different Higgs mass values

Errors due to parameter fitting reducible by higher MC statistics

Top quark mass

- Most important parameter which affect many predictions
- We want to have 0.1% accuracy for mt
 EWSB (indirect mH determination)
 Indirect determination of new physics parameters
 (eg SUSY parameters, ..., GUT informaiton)
 - Threshold scan of ttbar accurate mt measurement possible
 - Direct mass reconstruction

Combined information with higher order calculation can make it possible to determine new physics parameters.

EX) Theory calculation in MSSM

Top-Pair Threshold Study

Theory

– QCD Fixed Order (NNNLO) Kiyo

RGE (NNLL) Hoang

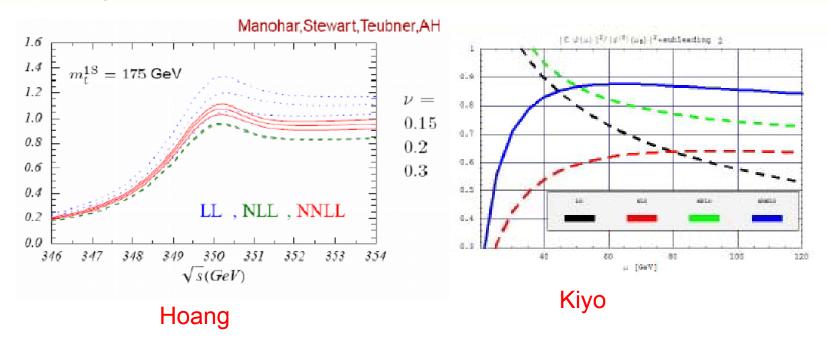
- EW

Experiment

Development of ttbar MC
 Gournaris

Luminosity SpectrumBoogert

Application


stop-pair thresholdSopczak

tth productionHoang

Theory talk for threshold ttbar production

Recent progresses on $\sigma(e^+e^- \to t\bar{t})$: NNLL RG improvement and NNNLO computation of the threshold cross section.

- ullet The NNLL' stabilize the cross section $\delta\sigma_{t\bar{t}}/\sigma\sim\pm6\%$ against μ variation (A. Hoang's talk)
- The NNNLO dynamical gluon and potential: Preliminary estimate \Rightarrow 10% shift and 5% scale dependence. (Y. Kiyo's talk)

Experimental study for ttbar threshold

"Towards a MC generator for ttbar production at threshold", F.Gournaris

A long-waited threshold event generator

"Determination of dL/dE and total CM energy", S. Boogert's talk

Threshold scan relys on the precise knowledge of the beam profile: (energy spread \sim 0.1%, beamstrahlung between 0.2-2.0 %, ISR)

Scalar Tops

Sopczak, Finch, Freitas, Milstene, Nowak, Schmitt

- From discovery sensitivity (Morioka'95) to precision mass determination.
- Importance of beam polarization, e⁺ pol. in addition.
- c-quark tagging vertex detector benchmark and finding c-jets in multi-jet scenarios.
- SPS-5 parameter and cosmology-motivated small neutralino-stop mass difference studied.
- Method with two center-of-mass energies, one at threshold, increases mass determination much, and gives Ω_{CDM} uncertainty similar to WMAP.

Top mass determination in the continuum

- Direct reconstruction of invariant mass distribution of t->Wb.
- Which mass is reconstructed?
- New conceptual work

n-collinear

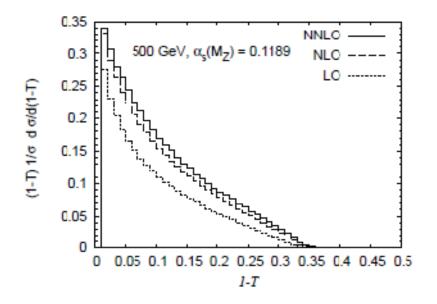
SOFT

hemisphere-a

soft particles

n-collinear

Thrust axis

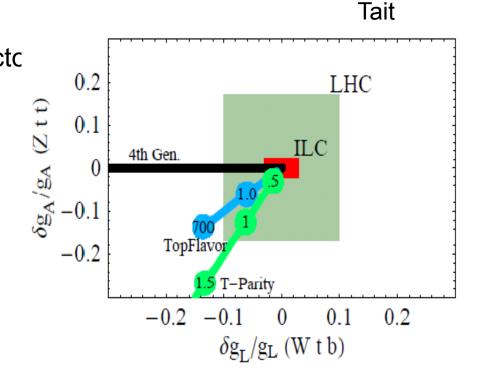

"Jet-Mass"

A.H.Hoang

Details see Loop Summary by Steinhauser

QCD

- Importance of determining alpha_s (goal ~1%)
- Gehrman NNLO for 3Jets has just completed.


Segond

Opportunity to test BFKL at ILC via exclusive rho pair production

Ztt, Wtb

Nomerotski

At ILC, using better Vertex Detector Resolution LEP X2-3
Polarization further X2
(80%e-, 60%e+),
we can make preision
measurements of anomalous
coupling. New Physics search

Anomalous coupling

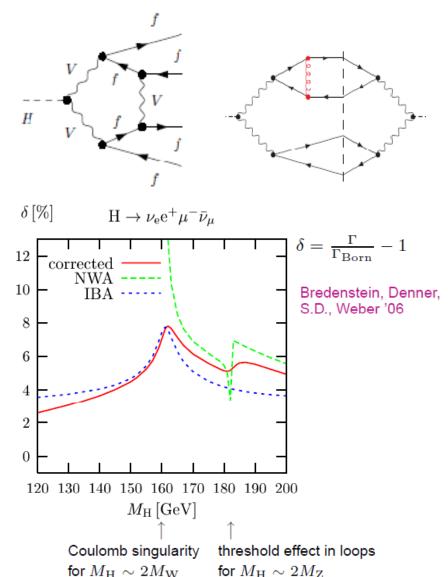
Boos

Single top production from e-gamma collision is the main Production mechanism for Wtb

$H \rightarrow WW/ZZ \rightarrow 4$ fermions

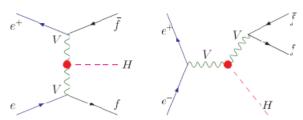
H $V \longrightarrow f$

S. Dittmaier


of diagrams O(200-400)

- Importance of $H \to WW^{(*)}/ZZ^{(*)}$
- LHC WW: Most important decay for mH > 125GeV
 ZZ: Precise measurement of mH (> 130GeV) (leptonic)
- ILC Branching ratio at % level Full reconstruction of $H \to WW$ (leptonic, hadronic)

Radiative correction QCD+EW long history


PROPHECY4f

MC generator with EW and QCD corr. All final state 4f Proper description of distribution

First results of PROPHECY4F on ${ m H} ightarrow { m WW/ZZ} ightarrow 4f$

- partial decay widths: EW corrections of $\mathcal{O}(8\%)$ for $M_{\rm H} \lesssim 500\,{\rm GeV}$ (reproduced by a simple improved Born approximation within $\lesssim 2\%$ for $M_{\rm H} \lesssim 400\,{\rm GeV}$)
- angular distributions: EW corrections of $\mathcal{O}(5-10\%)$ distort shapes
- invariant-mass distributions of W's and Z's: EW corrections of some 10% distort shapes (depend on inclusiveness of γ radiation)
- QCD corrections can be associated with W/Z decay (interference effects negligible)

Anomalous VVH coupling

Rohini Godbole

$$\Gamma_{\mu\nu} = g_V \left[a_V \ g_{\mu\nu} + \frac{b_V}{M_V^2} \left(k_\nu^1 k_\mu^2 - g_{\mu\nu} k^1.k^2 \right) + \frac{\tilde{b}_V}{M_V^2} \ \epsilon_{\mu\nu\alpha\beta} k^{1\alpha} k^{2\beta} \right] \quad \begin{array}{l} M_H - 120 \ \text{GeV}, \ Br(II \to b\bar{b}) \approx 0.68 \\ b\text{-quark detection efficiency} = 0.7 \\ \sqrt{s} = 500 \ \text{GeV}, \ \mathcal{L} = 500 \ \text{fb}^{-1} \end{array}$$

$$M_H = 120$$
 GeV, $Br(II \rightarrow b\bar{b}) \approx 0.68$
b-quark detection efficiency = 0.7
 \sqrt{s} = 500 GeV, \mathcal{L} = 500 fb⁻¹

$$a_W^{SM}=1=a_Z^{SM}\;,\;b_V^{SM}=0=\tilde{b}_V^{SM}\;,\;$$
 and $a_V\;=\;1\;+\;\Delta a_V\;$

Unpolarized: robust limit on $\Re(b_z)$, $\Re(\tilde{b}_Z)$ and $\Im(\tilde{b}_Z)$.

No direct probe for WWH

Polarized beam:

Initial state beam polarization Improves the sensitivity to up to a factor of 5-6

Unpolarized Beam	Polarized Beam	Observable used
$ \Re(ilde{b}_z) \leq 0.41$	$ \Re(\tilde{b}_z) \le 0.070$	$A_{UD}^{-,+}(R1;\mu)$
$ \Im(\tilde{b}_z) \le 0.042$	$ \Im(\ddot{b}_z) \le 0.0079$	$A_{FB}^{-,+}(R1;\mu,q)$

final state τ Polarization

Measurement of final state τ polarization helps to get stronger limit on $\Im(b_Z)$.

probe WWH couplings better. higher c.m. energy.

> Increase in energy helps improve the probing of $\Re(b_Z)$ even after inclusion of both ISR and Beamstrahlung effects.

Higgs CP property via ttH

Rohini Godbole

CP property: very important

- Is it the SM Higgs?
- CP-odd state? (A⁰ in 2HDM?)
- CP mixed state? (CPV in Higgs sector)

Top decays before hadronization

Spin information kept=decay distribution

Parametrize *ttd* coupling

$$g_{t\bar{t}\phi} = -ig_2 \frac{m_t}{2m_W} (a + ib\gamma_5) \quad (g_{ZZ\phi})_{\mu\nu} = -ic \frac{g_2 m_Z}{\cos\theta_W} g_{\mu\nu_g}$$

SM case: a = 1 = c and b = 0.

Study case: $|a|^2 + |b|^2 = 1$; a, b both being real.

Up-down asymmetry

$$A_{\phi} = \frac{\sigma_{\text{partial}}(0 \le \phi_{4}' < \pi) - \sigma_{\text{partial}}(\pi \le \phi_{4}' < 2\pi)}{\sigma_{\text{partial}}(0 \le \phi_{4}' < \pi) + \sigma_{\text{partial}}(\pi \le \phi_{4}' < 2\pi)}$$

$$\sin \phi_{4}' = \frac{\vec{P} \cdot (\vec{p}_{3} \times \vec{p}_{4}')}{|\vec{P}| \cdot |\vec{p}_{3} \times \vec{p}_{4}'|} \qquad (\vec{P} \equiv \vec{p}_{1} - \vec{p}_{2})$$

$$A_{\phi} = \frac{x_{\phi} \ ab}{x_t - y_t \ b^2} = \frac{x_{\phi} \ ab}{\sigma_{\text{tot}}}$$

$$0.04 \quad 0.03 \quad 0.02 \quad 0.01 \quad 0.001 \quad 0.0$$

Not so sensitive except for b ~ 1 Still polarlization asymm is still a good observables to study pure CP-even, odd cases

e^{-} e^{+} \bar{t}

New Physics effect on the Top-Yukawa

K. TSUMURA

In Effective theory, new hysics effect is characterized by dim.6 operators

$$\mathcal{L}_{dim.6} = \frac{1}{\Lambda^2} \sum_{i} C_i \mathcal{O}_i$$

They are constrained by current data and partial wave unitarity

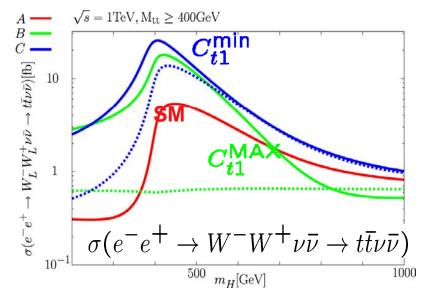
(ttH production Han et al.)

Top-Higgs interaction in W-fusion

Dim.6 couplings can enhance the cross section by several 10 % Such an effect may be observed in the WBF.

Buchmuller et. al

$$\mathcal{O}_{t1} = \left(\Phi^{\dagger}\Phi - \frac{v^2}{2}\right) \left(\bar{q}_L t_R \tilde{\Phi} + \text{h.c.}\right)$$

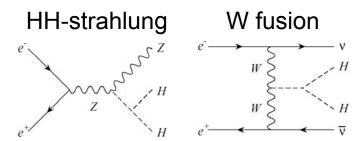

$$\mathcal{O}_{t2} = i(\Phi^{\dagger}D_{\mu}\Phi)\bar{t}_R \gamma^{\mu} t_R + \text{h.c.}$$

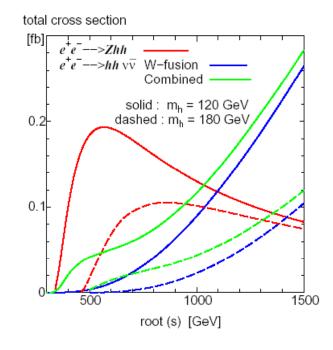
$$\mathcal{O}_{t3} = i(\tilde{\Phi}^{\dagger}D_{\mu}\Phi)\bar{t}_R \gamma^{\mu} b_R + \text{h.c.}$$

$$\mathcal{O}_{Dt} = (\bar{q}_L D_{\mu} t_R) \left(D^{\mu}\tilde{\Phi}\right) + \text{h.c.}$$

$$\mathcal{O}_{tW\Phi} = (\bar{q}_L \sigma^{\mu\nu} \vec{\tau} t_R) \tilde{\Phi} \vec{W}_{\mu\nu} + \text{h.c.}$$

$$\mathcal{O}_{tB\Phi} = (\bar{q}_L \sigma^{\mu\nu} t_R) \tilde{\Phi} B_{\mu\nu} + \text{h.c.}$$


Higgs-self coupling


- Most important issue
- What we can know from hhh?
 - Nature of EWSB
 - New Physics models
 - EW Phase transition (1st order, 2nd order?)

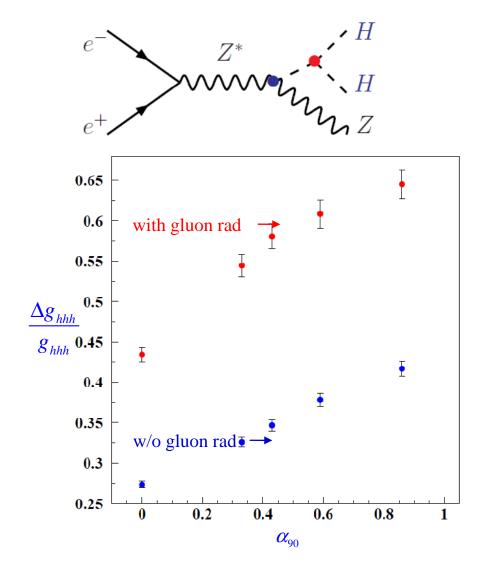
Baur, Plehn, Reinwater

- LHC (HH to W⁴) challenging
- ILC Simulation study

Barklow, Boumediene

HHH measurement at ILC

T. Barklow


$$e^{+}e^{-} \rightarrow ZHH \rightarrow q\overline{q}b\overline{b}b\overline{b}$$

 $\sqrt{s} = 500 \text{ GeV}$
 $L = 2000 \text{ fb}^{-1}$

All background Neural network analysis

Energy resolusion dependence large Effective L gain 40% if the jet energy Resolusion is improved from 60% to 30%

Large gluon rad effect

W/o gluon rad = 32-38% Inclu gluon rad =53-63%

Better b/c-tagging, b/bbar discrimination should improve the result

HHH measurement at ILC

Boumediene

- Study realized for a center of mass energy of 500 GeV
- Additional backgrounds w.r.t published analysis
- $m_H = 120 \text{ GeV}, \text{Br}(H \rightarrow \text{bb}) = 68\%$
- Signal cross section 0.18 pb $\Delta \lambda_{hhh}/\lambda_{hhh} \sim 1.75 \ \Delta \sigma_{hhz}/\sigma_{hhz}$
- Presence of 6 jets, 8 jets events → overlap → importance of jet reconstruction (typical final state for ILC physics)

The expected statistical precision on hhh is evaluated to 15% with a typical detector configuration and for a luminosity of 2ab-1

Signal: 3 channels

- hhqq
 - 6 jets
 - m_h & m_Z
- hhvv
 - 4 jets
 - missing energy
 - M_h
- hhll
 - 4 jets
 - 2 energetic leptons
 - m_Z & m_h

Higgs in New Physics Models

SUSY

FeynHiggsHeinemeyer

CMSSM Higgs production
 Weiglein

– HA productionBattaglia

Stop pairSopczak

Little Higgs

Discriminate Little Higgs models
 Reuter

Two Higgs Doublet Model

Ginzburg, Krawczyk, Lutz, Maniatis, Osland

Dim-6
 Tsumura

SM+Phantom Underwood

SUSY Higgs

MSSM Higgs potential contains two Higgs doublets:

$$V_{H} = m_{1}^{2} H_{1i}^{*} H_{1i} + m_{2}^{2} H_{2i}^{*} H_{2i} - \epsilon^{ij} (m_{12}^{2} H_{1i} H_{2j} + m_{12}^{2}^{*} H_{1i}^{*} H_{2j}^{*})$$

$$+ \frac{1}{8} (g_{1}^{2} + g_{2}^{2}) (H_{1i}^{*} H_{1i} - H_{2i}^{*} H_{2i})^{2} + \frac{1}{2} g_{2}^{2} |H_{1i}^{*} H_{2i}|^{2}$$

$$\begin{pmatrix} H_{11} \\ H_{12} \end{pmatrix} = \begin{pmatrix} v_{1} + \frac{1}{\sqrt{2}} (\phi_{1} - i\chi_{1}) \\ -\phi_{1}^{-} \end{pmatrix}$$

$$\begin{pmatrix} H_{21} \\ H_{22} \end{pmatrix} = e^{i\xi} \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + \frac{1}{\sqrt{2}} (\phi_{2} + i\chi_{2}) \end{pmatrix}$$

Complex phases $arg(m_{12}^2)$, ξ can be rotated away

 \Rightarrow Higgs sector is \mathcal{CP} -conserving at tree level

CP violating SUSY Higgs Sector

CPV induced at loop level from phases of

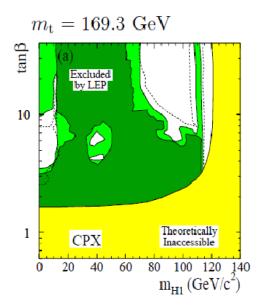
CP-violating case (CPX scenario):

LEP exclusion bounds

μ: Higgsino mass parameter

 $A_{t,b,\tau}$: trilinear couplings

 $M_{1,2}$: gaugino mass parameter (one phase can be eliminated)


 $m_{\tilde{g}}$: gluino mass

 \mathcal{CP} -violating mixing between neutral Higgs bosons h_1 , h_2 , h_3

Phenomenology different from CP conserving case,

Holes in CPX plane:

Resuction of coupling by mixing Large $BR(h_2 \rightarrow h_1h_1)$

 $m_{
m t}=174.3~{
m GeV}$

80 100 120 140

 $m_{H1} (GeV/c^2)$

CPX

[LEP Higgs Working Group *

no lower limit on $M_{\rm h_1}$: light SUSY Higgs not ruled out! sensitive dependence on $m_{\rm t}$

no lower limit on $M_{\rm h_1}$: light SUSY Higgs not ruled out! sensitive dependence on $m_{
m t}$ CP-violating loop effects in the Higgs sector of the MSSM, Georg Weiglein, C

New results on loop effects in the MSSM with complex parameters

G. Weiglein

New results in MSSM Higgs sector with complex param.: Complete one-loop results for masses, mixings, $\Gamma(h_2 \to h_1 h_1)$, $\Gamma(h_i \to f \bar{f})$ + two-loop $\mathcal{O}(\alpha_{\rm t} \alpha_{\rm s})$ corrections

Complex phases can have large impact on Higgs phenomenology:

- 2-loop contrib. yield large enhancement of phase dep.
- large effect on BR $(h_2 \rightarrow h_1 h_1)$
- Confirmation of "CPX holes"

Comparison of $BR(h_2 \to h_1 h_1)$, CPX scen., $\varphi_{M_3} = 0$: New diagramm. result (left) vs. CPsuperH (right)

Comparison takes into account conversion of $|A_t|$ from on-shell scheme to \overline{DR} scheme [G. W., K. Williams '07]

- \Rightarrow Qualitative agreement, BR($h_2 \rightarrow h_1 h_1$) enhanced
- ⇒ Confirmation of "CPX holes"

Feyn Higgs for the ILC

Sven Heinemeyer

```
Latest version: FeynHiggs 2.5.1 (02/07)
version FeynHiggs 2.6 to be released within two weeks ...
real MSSM:
contains all available higher-order corrections
to Higgs boson masses and couplings
FeynHiggs contains

    full 1 loop calculations

    all available 2 loop calculations (leading and subleading)

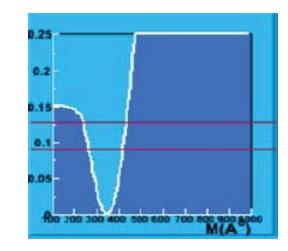
    very leading 3 loop contributions

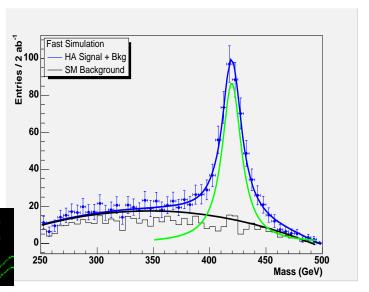
complex MSSM:
contains nearly all available results
(we are (even currently) working on the rest)
                             www.feynhiggs.de
```

HA reconstruction at LCC4 with Full Simulation

Battaglia

[LCC4] DM motivated parameter point to characterizes with $\frac{mA}{2m\chi} \sim 1$, which need to study in great deal with high accuracy.


Not only ma but also Γ a should be determined precisely.


At LHC, LCC4 may be beyond reach.

At ILC (1TeV), A produced in pair with H.

$$e^+e^- \to AH \to (b\overline{b})^2$$

Re-analysis of HA channel for LCC4 at 1 TeV using full simulation and MarlinReco started;

study of HA decays allows to promote the relative accuracy on Ωh² from 0.16 to 0.08 thus matching the accuracy of the first WMAP determination;

Distingish Little Higgs models

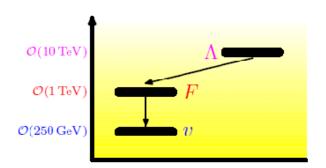
J. Reuter

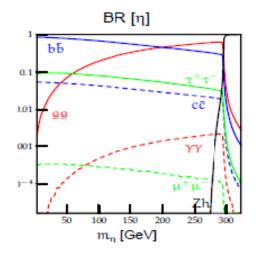
Little Higgs: Higgs as a pseudo Goldstone boson

$$m_H \sim rac{g_1}{4\pi} rac{g_2}{4\pi} rac{\Lambda}{\Lambda}$$

- Extended global symmetry
- Specific functional form of the potential
- Extended gauge symmetry: γ' , Z', W'^{\pm}
- New heavy fermions: T, but also U, C, \ldots η axion-like particle:

Product Group Models (Littlest Higgs)


Simple Group Models (Simplest Higgs)



forbidden in Product Group Models

 $ZH\eta$ coupling as a discriminator

two Higgs-triplets with a tan β -like mixing angle

Rich collier phenomenolgy

Invisible decay

2HDM

$$\begin{split} V_{2HDM} &= \frac{1}{2} \lambda_1 (\phi_1^{\dagger} \phi_1)^2 + \frac{1}{2} \lambda_2 (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) \\ &+ \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] + \left[(\lambda_6 (\phi_1^{\dagger} \phi_1) + \lambda_7 (\phi_2^{\dagger} \phi_2)) (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] \\ &- \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\} \end{split}$$

In general 14 parameters: $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \lambda_7, m_{11}^2, m_{22}^2, m_{12}^2$ however only 11 independent physical parameters

- Often set $\lambda_6 = \lambda_7 = 0$ for avoiding FCNC
- Then 2 type Yukawa couplings (Model I or II (MSSM like))
- If complex λ_5 , CP violation

LCWS2007 l utz I.Ginzurg, Maniatis,

Charged Higgs at LEP Vacuum Structure, Formulation P. Osland, M. Krawczyk Constraint on 2HDM, charged Higgs mass

Constrain parameters of 2HDM

P. Osland

Positivity

Perturbative unitarity

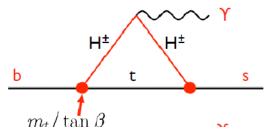
Experimental constraints

Experimental constraints:

\(\Gamma_{\text{Z}} \rightarrow \text{bb} \)

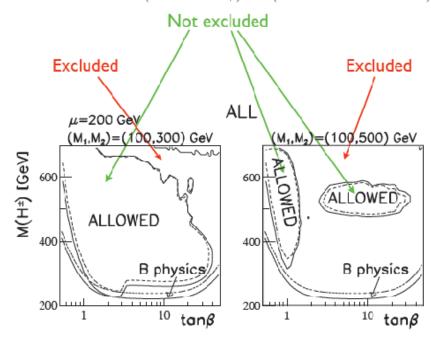
excludes low tanß

• LEP2 non-discovery light H decouples


• Δρ

neutral sector

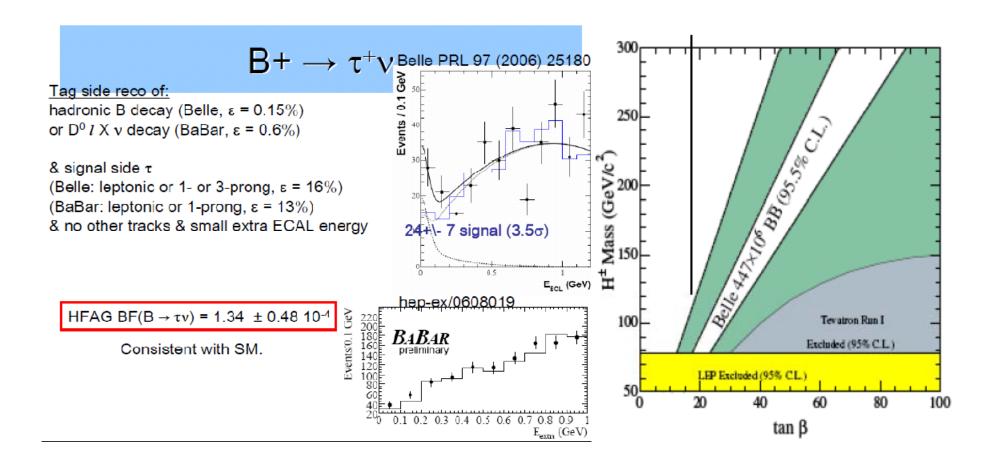
spectrum compact


• (g-2)_µ

rel. only at very large tanβ

Misiak et al: $\mathcal{B}(\bar{B} \to X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$

HFAG (exp): $\mathcal{B}(\bar{B} \to X_s \gamma) = (3.55 \pm 0.24 \pm \cdots) \times 10^{-4}$


 $(M_1,M_2)=(100,300) \text{ GeV}$ $(M_1,M_2)=(100,500) \text{ GeV}$

 $\mu^2 = (200 \text{ GeV})^2$

LHC may provide total exclusion (or discovery)

B+ -> tau+ nu

M. Krawczyk

SM + Phantom model

T. Underwood

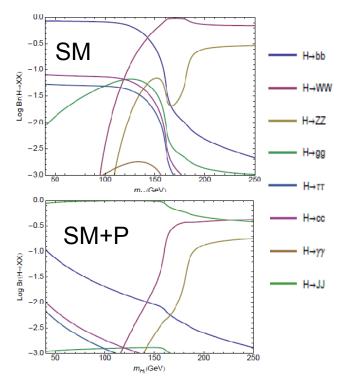
Introduce a minimal lepton number conserving "phantom" sector to the Standard Model

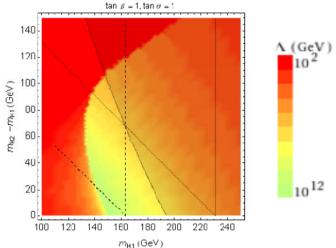
"Phantom" → singlet under the Standard Model gauge

group $SU(3)_c \times SU(2)_L \times U(1)_Y$

Very simple extension leading to:

Dirac Neutrino Masses Dirac Leptogenesis Higgs Phenomenology


$$V = \mu_H^2 H^* H + \mu_\Phi^2 \Phi^* \Phi + \lambda_H (H^* H)^2 + \lambda_\Phi (\Phi^* \Phi)^2 - \eta H^* H \Phi^* \Phi$$


Spontaneous breakdown of Global U(1)_D EWSB

the Goldstone bosons: G (eaten as usual) and J h and ϕ mix (due to the η term) and become two massive Higgs bosons H_1 and H_2

Higgs invisible decay

Model constraint from LEP data, Positivity, Triviality

Out Look

- To explore nature of EWSB and new physics is the top priority in high energy physics
 - LHC will open Tera scale
 - ILC then solve Post-Higgs Problem (Reconstruct New physics Lagrangian)
- Highly precise calculation and full detector simulation in various observables

QCD,EW
 Many developments recently

Coupling measurement
 Higgs self-coupling, Top-Yukawa

More new physics scenarios beyond SM

```
Little Higgs, 2HDM, dim-6, extra D, phantom, gauge-Higgs, Higgsless, ...
```

In either way, let us be prepared whatever the outcome from LHC will be.