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• Compton scattering & low energy experience
• ILC energy range & magnetic spectrometer basic concept
• adding laser to the setup
• Compton cross-section
• achievable statistical accuracy
• energy variation between bunches
• conclusion



Introduction

• The goal of this study was to suggest an independent complemen-
tary approach to measure the average bunch energy with accuracy
better then 10−4.

• The goal of this presentation is to introduce the main concepts of laser
Compton backscattering application for precise ILC beam energy
calibration.
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Energy spectra of scattered photons/electrons
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Energy spectrum of scattered electrons
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Energy spectrum of backscattered photons

ωmax

edge photons energy:

ωmax = ε2

ε +
m2

4ω0

edge electrons energy:

Eedge ≡ ε− ωmax = ε

1 +
4εω0

m2

. Both ωmax or Eedge could be used to measure the beam energy ε
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Low energy experience
• BESSY-I (1997), BESSY-II (2002), VEPP-4M (2005)
• scattered photons are mesured by HPGe detector
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ILC energy range (ε = 50÷ 500 GeV)

• tens–hundreds GeV scattered photons or electrons
• energy of each bunch should be measured in a non-destructive way

That’s why we can’t use the low energy approach at the ILC, and a new
scheme should be suggested:

scattered photons

beam electrons

edge  electrons

laser photons

June 2, ILC/LCWS 2007 DESY. (5 / 13)



X

Xo

L

l*
B

X_beam

electron beam

synchrotron radiation photons

June 2, ILC/LCWS 2007 DESY. (6 / 13)



X

Xo

L

l*
B

X_beam

electron beam

synchrotron radiation photons

α
LASER

high−energy Compton photons

laser photons

dN

dX

X

X_edge

scattered electrons

ω 0

June 2, ILC/LCWS 2007 DESY. (7 / 13)



X

Xo

L

l*
B

X_beam

electron beam

synchrotron radiation photons

α
LASER

high−energy Compton photons

laser photons

X_edge

scattered electrons

ω 0

{
Xbeam = X0 + A/Ebeam + δsr

Xedge = X0 + A/Eedge + δsr
Eedge =

ε

1 +
4εω0

m2

Xedge = X0 + A/Ebeam + A
4ω0

m2 + δsr
A =

m2

4ω0

(
Xedge −Xbeam

)
A ∼

(
L + l/2

)
·

l∫
0

B(s)ds
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What do we have from laser backscattering?

• X0 is the center of gravity in the space distribution of backscattered
high-energy photons, it potentially could be measured by dedicated
detector

• Xbeam is the beam position in the detection plane that could be mea-
sured by precise BPM

• Xedge is the Compton edge position in the scattered electrons distribu-
tion over X

One can measure the beam energy using X0, Xbeam and Xedge from three
different space-sensitive detectors:

Ebeam =
m2

4ω0

( Xedge −Xbeam

Xbeam −X0 − δsr

)
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Accuracy

∆Ebeam

Ebeam
=

∆Xedge

Xedge −Xbeam
⊕ Xedge

Xedge −Xbeam

(∆Xbeam

Xbeam

)
⊕ ∆X0

Xbeam
⊕ ∆δsr

Xbeam

⇓ ⇓ ⇓

∆Xedge = BPM Photon
detector√√√√ 2 · σXedge

dN

dx
(Xedge)

• dN/dX is defined by Compton cross section and luminosity, while σXedge

is a convolution of the beam size at the detection plane with an influ-
ence from beam energy spread.

• Simple analytical predictions as well as Geant4 simulations, show that
the accuracy ∆E/E . 10−4 is achievable with 106 scattered electrons.

• Systematic error source appears from B-field non-uniformity in the spec-
trometer magnet and L variations.
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Compton cross section example
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Bunch-to-bunch energy variations
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As far as A could not change
as rapidly as the bunch energy,
the required statistics in SE distri-
bution could be collected from
several different bunches.
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Conclusions

• Compton backscattering in combination with magnetic spectrome-
ter may provide a complementary approach to measure the beam
energy: the absolute scale values of the spectrometer B-field and arc
length do not impact on the measurement procedure.

• The statistical accuracy of the approach allows to hope that the sys-
tematic error sources will not cancel the idea

• The approach is flexible enough to work in the wide beam energy
range, even at low-energy machines

• Why this setup couldn’t be used for polarimetry?

• Further studies are required to explore the influence of systematic error
sources
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Ultra relativistic electron in magnetic field

θ(l, E) = θ0 +
K1

E

l∫
0

B(s)ds + K2

l∫
0

B3(s)sds

⇓ ⇓
Lorentz force SR losses

Both K1 and K2 are just the combinations of fundamental constants c, m, ~, α.

If the B-field integral is equal for electrons with different energies:

• Lorentz force bending is inverse proportional to the electron energy
• bending due to SR losses does not depend on the electron energy

In other words:

θ(E) = θ0 +
A

E
+ δsr

June 2, ILC/LCWS 2007 DESY. (14 / 13)



What do we have from laser backscattering?

{
Xbeam = X0 + A/Ebeam + δsr

Xedge = X0 + A/Eedge + δsr

(1)


Eedge =

ε

1 +
4εω0

m2

Xedge = X0 + A/Ebeam + A
4ω0

m2 + δsr

(2)

One can extract the A constant from Xbeam and Xedge difference, making
the approach independent from the accuracy of B-field measurement in
an absolute scale:


A =

m2

4ω0

(
Xedge −Xbeam

)
A ∼

(
L + l/2

)
·

l∫
0

B(s)ds

(3)
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