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INntfroduction

e The goal of this stfudy was to suggest an independent complemen-
tary approach to measure the average bunch energy with accuracy
better then 10~

e The goal of this presentation is to infroduce the main concepts of laser
Compton backscattering application for precise ILC beam energy
cdalibration.
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Energy spectra of scattered photons/electrons
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Low energy experience

e BESSY-I (1997), BESSY-II (2002), VEPP-4M (2005)
e scaftered photons are mesured by HPGe detector
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ILC energy range (¢ = 50 + 500 GeV)

e tens-hundreds GeV scattered photons or electrons
e energy of each bunch should be measured in a non-destructive way

That’s why we can’t use the low energy approach at the ILC, and a new
scheme should be suggested:

scattered photons

beam electrons

laser photons
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What do we have from laser backscattering?

e X, is the center of gravity in the space distribufion of backscattered
high-energy photons, it potentially could be measured by dedicated
detector

e X,..m IS the beam position in the detection plane that could be meao-
sured by precise BPM

o X.q4 is the Compton edge position in the scattered electrons distribu-
fion over X

One can measure the beam energy using Xy, Xpeam aNd X4, from three
different space-sensitive detectors:
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Accuracy
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e dN/dX is defined by Compton cross section and luminosity, while o, .
is a convolution of the beam size at the detection plane with an influ-
ence from beam energy spread.

e Simple analytical predictions as well as Geant4 simulations, show that
the accuracy AE/E < 107* is achievable with 10% scattered electrons.

e Systematic error source appears from B-field non-uniformity in the spec-
tfrometer magnet and L variations.
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Compton cross section example
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Bunch-to-bunch energy variations

[ scattered photons

Bl beam electrons

I scattered electrons

As far as A could not change
as rapidly as the bunch energy,
the required statistics in SE distri-
bution could be collected from
several different bunches.
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Conclusions

e Compton backscattering in combination with magnetic spectrome-
ter may provide a complementary approach to measure the beam
energy: the absolute scale values of the specfrometer B-field and arc
length do not impact on the measurement procedure.

e The stafistical accuracy of the approach allows to hope that the sys-
tematic error sources will not cancel the idea

e The approach is flexible enough to work in the wide beam energy
range, even at low-energy machines

e Why this setup couldn’t be used for polarimetry?

e Further studies are required to explore the influence of systematic error
sources
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Ultra relafivistic electron in magnetic field
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Lorentz force SR losses

Both K; and K5 are just the combinations of fundamental constants ¢, m, k, a.

If the B-field integral is equal for electrons with different energies:

e Lorentz force bending is inverse proportional to the electron energy
e bending due 1o SR losses does not depend on the electron energy

In other words:

A
O(F) = HO+E+6ST
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What do we have from laser backscattering?
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One can exfract the A constant from Xj.., and X4, difference, making
the approach independent from the accuracy of B-field measurement in
an absolute scale:
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