Determination of dL/dE and total CM energy

Stewart T. Boogert Royal Holloway, University of London

Filimon Gournaris University College London

Talk outline

- Introduction to top threshold
- Energy spectrum
 - Extraction of Beamstrahlug parameters
 - Effect of systematics
 - EM deflections
 - GP simulations
- Absolute energy measurement
 - Upstream energy spectrometer
 - Operating goals
 - (Quick) introduction to beam tests
- Plans
 - Include detector simulation
 - Check effect of beam correlations

Top threshold simulation

- Top threshold simulated using Toppik
 - Hoang and Teubner
 - topMC from Gournaris

- Two alternative methods are used to smear the threshold curve
 - Histogram (binned)

$$\sigma'(\sqrt{s}) = \int_{0}^{1} p(x) \sigma(x\sqrt{s}) dx$$

- Large number of bins required when including all effects
 - ISR : 0<x<1
 - Beamstrahlung : 0.75<x<1
 - Energy spread : 0.99<x<1.01
- Event sample (unbinned)
 - Large number of samples (N) of x distributed in a luminosity spectrum

$$\sigma'(\sqrt{s}) = \frac{1}{N} \sum_{i=1}^{N} \sigma(x_i \sqrt{s})$$

6/1/2007

Stewart T. Boogert (Accelerator parameter impact on top threshold mass)

Beamstralhung

- 5 proposed parameter sets reflecting different operating conditions of the ILC
 - All equivalent luminosity (apart from High-Lum)
 - Low-Q (low charge from Damping rings)
 - Large-Y (large vertical beam size)
 - Low-P (lower linac RF power)
 - High-L (high et possible luminosity)
- Luminosity kept same via changing IP beam sizes
 - Changes beamstrahlung
- Only consider Nominal, Low-Q and Low-P secnarios
 - 1, 0.5, 2 times beamstrahlung
- Simulated using Guinea-Pig
 - 5 runs, ~10⁶ collision events

	Nominal	Low-Q	Large-Y	Low-P	High-L
β_x	21.0	12	10	10	10
β_y	0.4	0.2	0.4	0.2	0.2
σ_x	655	495	495	452	452
σ_y	5.7	8.1	8.1	3.8	3.5
σ_z	300	500	500	200	150

6/1/2007 Stewart T. Boogert (Accelerator parameter impact on top threshold mass)

Parameterization and fits

- Spectra must be parameterized and fitted
 - Essential for beamstrahlung measurement
- Spectra fitted to convolution of beta function (beamstrahlung) and Gaussian (energy spread)
 - Beam spread added to bunches before collision

 $f(x;a_i,\sigma) \sim (a_0\delta(1-x) + (1-a_0)x^{a_2}(1-x)^{a_3}) * g(x;\sigma)$

- Fit parameters for the 5 parameter sets
 - a₀ smaller for larger beamstrahlung
 - Divergent terms a₂, a₃ larger with increasing beamstrahlung

	Nominal	Low-Q	Large-Y	Low-P	High-L
a_0	0.560	0.653	0.759	0.535	0.547
a_2	15.326	35.026	12.54	7.561	6.171
a_3	-0.715	-0.800	-0.707	-0.632	-0.624
σ_E [GeV]	0.177	0.175	0.175	0.177	0.177
$\langle E \rangle$ [GeV]	173.67	174.66	174.10	171.64	171.04

Luminosity spectrum

- Centre of mass energy variation, three main sources
 - Accelerator energy spread
 - Typically ~0.1%
 - Beamstrahlung
 - Typically between 0.2% and 2%
 - Initial state radiation (ISR)
 - Calculable to high precision in QED
 - Complicates measurement of Beamstrahlung and accelerator energy spread
 - Calculated using PANDORA

Luminosity spectrum simulation

- Simulation
 - Accelerator simulation to define beam before collision
 - Distribution of particles in 6 dimensional phase space (position, angles & energy
 - Beamstrahlung input from
 - Guinea-Pig (collision dynamics simulation)
 - CIRCE (parameterization based on Guinea-Pig output)
 - Bhabha scattering based on BHWIDE, wide angle Bhabha scattering Monte Carlo
 - Luminosity spectrum format
 - Parametrization
 - Histogram (distribution)
 - Discrete events (macro particles)
- Problems
 - Interface between Guinea-Pig and Monte Carlo generators

Bhabha acolinearity

- Bhabha scattering to monitor dL/dE
 - $e^+e^- \rightarrow e^+e^-n(\gamma)$
 - High rate compared with top threshold rate
- Two approximate reconstruction methods
 - Only use angles of scattered electron and positron
 - Both based on single photon beamstrahlung
 - Frary-Miller

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

– K. Moenig

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

6/1/2007

Extraction of beamstrahlung spectrum

- Bhabha luminosity spectrum reconstruction performance
 - Reasonable given assumptions in x reconstruction
 - Definition of true luminosity spectrum problematic due to overlap of ISR and FSR in Bhabha scattering
 - Main differences between measured and true x at x~1
- Scatter plot of x_{recon} and x_{true}
 - Mainly diagonal contribution, degeneracy at large x
 - Mainly due to the single photon approximation
- Problem now
 - How to extract beamstrahlung and beam spread from the observable x
 - Two different methods being investigated
 - Unfolding
 - Fitting

Extraction of beamstrahlung spectrum

- Vary beamstrahlung parameters
 - a_i by 10%
 - Generate new x distributions $x(a_i+\Delta a_i)$
- Assume that variation in x distribution is linear in beamstrahlung parameters

$$x_{j}(a_{0},a_{2},a_{3}) = x_{j}^{0} + \sum_{i} \frac{a_{i} - a_{i}^{0}}{\Delta a_{i}} (x_{j}^{i} - x_{j}^{0})$$

- Compare resulting x distribution to nominal fit values
 - Fit using histogram usual least squares

$$\chi^{2}(a_{0}, a_{2}, a_{3}) = \sum_{i} \frac{\left[x_{i}(a_{0}, a_{2}, a_{3}) - x_{i}(a_{0}^{0}, a_{2}^{0}, a_{3}^{0})\right]^{2}}{\sigma_{i}^{2}}$$

EM deflections

- Bhabha products deflected by strong fields of the bunch
 - Implemented BHWIDE within Guinea-PIG
- $\theta_{\text{prod}} > \{1^{\circ}, 4^{\circ}, 7^{\circ}\}$
- Deflection of final state products wi effect angular reconstruction
 - Effect similar in magnitude to tracked detector resolution
- 'Focusing' effects for different production angles
- Complicates simulation of bhabha events

Guinea-pig simulations

- Guinea-Pig used to simulate dynamics of beam collision
 - Coherent EM field
 - Radiation is beamstrahlung
- Optimized/tested to predict machine parameters
 - Not energy spectrum
- Check technical parameters
 - Calculation grids
 - Number of particles
- Typically shifts <0.1%

Extraction of top parameters

6/1/2007 Stewart T. Boogert (Accelerator parameter impact on top threshold mass)

Extraction of top parameters

- Generate data with
 - 9 equidistant scan points
 - − Range 346→354 GeV
 - 1 nb⁻¹ to 30 nb⁻¹ per point
 - Linac energy spread 0.1%
- Fit cross section
 - Smeared with different luminosity spectra
 - Measured from Bhabha
 analysis
 - True luminosity spectrum from parameterization fit to Guineapig
 - Form usual χ² between "data" and "theory" cross section

Beamstrahlung effect on top parameters

- Previous study from LCWS-05
 - Effect of beamstrahlung parameter effect on top mass
 - Reasonably low sensitivity
 - Given errors on beamstrahlung parameters systematic shifts ~1-2 MeV

Absolute beam energy measurement

- Bend beam with precise magnetic field
- Measure deflection
- Maximum deflection allowed ~5mm
- Require beam position resolution ~100nm
- For top mass measurement of 10⁻⁴
- Average pulses/trains/runs

BPMs to measure deflection

- Rectangular cavities
- Separated X,Y and Q cavities
- Resolution ~350nm

- ILC linac prototype cavities
- Cylindrical design
- X and Y in same cavity
- Resolutions ~700nm

er impact on top threshold mass)

Results of spectrometer test beams

- First test runs with magnets and BPMs
- SLC 28.5GeV beam delivered to ESA
 - Results from Spring running
 - Have to prove this is just energy
 - Absolute energy calibration (know absolute magnetic field and systematic error of deflection

Summary

- Bhabha systematics looked at do not seem problematic
 - Basic checks of luminosity spectrum
 - Electromagnetic deflections of final state
 - Must look carefully at correlations
 - Detector effects will complete the study
- Energy diagnostics well underway
 - More test runs in July
 - Detailed technical/quasi engineering design for the machine end of this year
- With these results
 - Use developments in MC/event simulation and complete top threshold analysis
 - Dominant sources of systematic error
 - Expected statistical error (already done)
 - Running strategies