Push-pull studies How to proceed Andrei Seryi for BDS Area leaders Deepa Angal-Kalinin, A.S., Hitoshi Yamamoto, and for BDS design group LCWS07 June 1, 2007 at DESY **Global Design Effort** ## Goal of this talk - This is not a talk on status of push-pull studies - See next two talks on push-pull related updates since Valencia and other talks in MDI sessions - The goal is to discuss, and get your feedback on the way to focus the Engineering Design efforts - Process; Goals; Work Packages? from S4 & RDB report - Integrated design of IR, development of IR superconducting magnets, build engineering prototype of FD magnets, design study to ensure IR mechanical stability, design of push-pull arrangements - development of crab cavity systems, test phase control system with two single cell cavities, build single multi-cell cavity - design, construction, commissioning and operation of ATF2 test facility - develop laser wires for beam diagnostics, prototype laser wires at ATF2 - development of intra-train feedback, prototype at ATF2 - develop beam dump design & study of beam dump window survivability - develop collimator design, verify collimation wake-fields & beam damage - development and tests of MDI type hardware such as energy spectrometers, IP feedback BPMs, beamcals, etc. - and the design work, which does not involve hardware development but use results of the above listed work related to push-pull studies (hardware in italic) | | 2007 | 2008
EDR | 2009 | 2010 | 2011
roval | 2012 | 2013 | 2014 | 2015
Construction | 2016 | 2017 | 2018 | 2019
Commiss. | |---------------------|---|---------------------------------|---------------------------------------|--|--|--|-------------------------------|--|--|--|-----------------------------------|-----------------------------|------------------| | Constraints | | LDIX | | LHC physics | total length | | tunnel & optics layout frozen | | optics
details
frozen | | tunnels
ready for
install-n | | Commiss. | | Beam
dumps | | | | pre approval | | beam dump final engine | | ering design | | beam dump
construction | | beam
dump
installed | | | crab cavity | design, build & test of conceptual phase control system; cavity fabrication; conceptual cryostat design; LLRF develop and test with single cells | | | design of cryostat; cavity integration; beam test of one cavity | | beam tests of two cavities | | final engineering | | production | | installed | | | ATF2 | ATF2 constr
installation. | Start of | Commission ing | Beam size
and optics
results | Beam
stability
results | 2nd phase
smaller em
beam size | , e.g. SC FD;
ittance & | Instrumenta
developme
tests at bea | nts and | | | | | | Final
Doublet | Engineering design; full length
prototype; stability design study and
initial stability tests | | Stability tests & design optimization | | final desigr | n | production | | lab tests | installation and pre-
commissioning | | | | | Detectors | Conceptual design; selection of two concepts; continue design | | | Design optimization | | final design and start of production Constru | | | nstruct, assemble and pre-commis
face | | ission on | Lower
down &
commiss. | | | IR
integrated | Conceptual eng. design of IR vaccum chambers; supports; pacman and moving shielding; cryogenic; service platform; detector moving system; cranes; etc. | | | | | production | | | | installation and pre-
commissioning | | | | | Magnets | Optimization of number of styles;
conceptual design of most magnets;
definition of interfaces; Detailed design
of low field and other special magnets;
Vibration -wise design | | | Design and cost optimization; layouts with real space allocation, and detailed interfaces. | | | | production | | installation and pre-
commissioning | | | | | Collimation | Tests of collimation wakefields and beam damage tests; conceptual eng. design | | | ontimization & integration | | final design & pre-
production prototypes | | production | | installation and pre-
commissioning | | | | | Instrumentat
ion | Develop laser wires; test feedback
BPMs with secondary beam;
conceptual eng. design | | ontimization X. Integration | | final design & pre-
production prototypes | | | | installation and pre-
commissioning | | | | | | Vacuum
systen | | conceptual e
sign of IR vacu | | Detailed eng optimization of beamlines | & integration | final desigr | | | rk in | | installation | uie o | | For IR integrated design, the goal, in a nutshell, is to evolve from cartoon-concept level schemes like the one above, to detailed 3d drawings of the system # IR integration, a start - Goal: To review and advance the design of the subsystem of the Interaction Region of ILC, focusing in particular on their integration, engineering design and arrangements for push-pull operation. - ... goal is to make progress on the design of the ILC IR through focused preparation before and during the workshop... - The International Program and Advisory Committee is being formed. Its charge includes organization of preparatory work before the workshop and production of conceptual solutions and drawings that could be further discussed and reviewed at the workshop... - this is an attempt to align the organization of the workshop with EDR WP organization → how to do it optimally? ### IR Eng. workshop: tentative working groups | Group A | Overall detector design, assembly, detector moving, shielding. Detector design for on-surface assembly and underground assembly procedures. Beamline pacman shielding, detector shielding design. | |---------|---| | | IR magnets design and cryogenics system design. Cryogenic system design, connections, flexible cryo lines, safety issues. IR magnet engineering design, support, integration with IR, masks, Luminosity & Beam calorimeters, deign of IR vacuum chamber, connection to elements, assembly-disassembly procedures, | | Group B | integration of near IR masks and overall integration of crab cavity. | | Group C | Conventional construction of IR hall and external systems. Lifting equipment, IR electronics hut, cabling plant, services, shafts, service caverns, utilities, movable shielding; design solutions to meet alignment and vibration tolerances | | | Accelerator and particle phicics requirements. Including masking, collimation, shielding requirements, image charges, wakes, external | | Group D | radiation, accelerator physics & optics design and constraints on IR engineering design, on alignment tolerances and stability for the IR components and IR hall floor. | #### Does this map optimally to EDR WP structure | ill | 9/17/2007 | 9/18/2007 | 9/19/2007 | 9/20/2007 | 9/21/2007 | |-------------|--|---|---|--|---| | 9:00-10:30 | Introduction plenary, Kavli auditorium. Talks: 1) ILC IR and BDS design and workshop goals. 2) Physics requirements to IR design; 3) IR design experience from existing machines (LHC); 4) Experience from D0, CDF, PEP-II, KEK-B; | Plenary, Kavli. Talks: 1-3) Design and assembly of SiD, GLD-LDC, 4th concept; 4) Accelerator physics design of IR; 5) Alternative designs of IR | | Parallel working groups, WG-B, WG-D. ROB rooms | | | 10:30-11:00 | break | break | break | break | | | 11:00-12:30 | Plenary, Kavli. Talks: Continue on IR deisgn from existing machines (IHEP, Frascati, etc). | Parallel working groups,
WG-A: Overall detector
design; WG-D: Acc and
phys requirements. ROB
rooms | Parallel working
groups, WG-A,
WG-C. ROB rooms | WG-A-B-C-D;
Working tour to
SLD hall | Post-summary work of working groups. ROB rooms or local offices | | 12:30-13:30 | lunch | lunch | lunch | lunch | lunch | | 13:30-15:00 | Plenary, Kavli. Talks: 1) IR conventional facility design 2) IR magnet and cryogenics design | Parallel working groups,
WG-A, WG-D. ROB
rooms | Parallel working
groups, WG-B,
WG-C. ROB rooms | Parallel working
groups, WG-A-B-
C-D, Summary
preparation. ROB
rooms | Post-summary work of working groups. ROB rooms or local offices | | 15:00-15:30 | break | break | break | break | | | 15:30-17:00 | Parallel working groups, WG-B: IR magnets design and Cryogenics systems. WG-C: IR hall conventional facility design. ROB rooms | Parallel working groups,
WG-B, WG-C. ROB
rooms | End of the day
plenary
discussions, Kavli
auditorium | Plenary, Kavli.
Summary talks,
WG-B; WG-A | Reserve | | 17:00-18:00 | Parallel working groups, WG-B:
IR magnets design and
Cryogenics systems. WG-A:
Overall detector design. ROB
rooms | End of the day plenary
discussions, Kavli
auditorium | End of the day
plenary
discussions, Kavli
auditorium | Plenary, Kavli.
Summary talks,
WG-C; WG-D | Reserve |